#include #if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include "RCInput.h" #include #include #include #include #include #include using namespace VRBRAIN; extern const AP_HAL::HAL& hal; void VRBRAINRCInput::init() { _perf_rcin = perf_alloc(PC_ELAPSED, "APM_rcin"); _rc_sub = orb_subscribe(ORB_ID(input_rc)); if (_rc_sub == -1) { AP_HAL::panic("Unable to subscribe to input_rc"); } pthread_mutex_init(&rcin_mutex, nullptr); } bool VRBRAINRCInput::new_input() { pthread_mutex_lock(&rcin_mutex); bool valid = _rcin.timestamp_last_signal != _last_read; if (_rcin.rc_failsafe) { // don't consider input valid if we are in RC failsafe. valid = false; } _last_read = _rcin.timestamp_last_signal; pthread_mutex_unlock(&rcin_mutex); if (_rcin.input_source != last_input_source) { gcs().send_text(MAV_SEVERITY_DEBUG, "RCInput: decoding %s", input_source_name(_rcin.input_source)); last_input_source = _rcin.input_source; } return valid; } uint8_t VRBRAINRCInput::num_channels() { pthread_mutex_lock(&rcin_mutex); uint8_t n = _rcin.channel_count; pthread_mutex_unlock(&rcin_mutex); return n; } uint16_t VRBRAINRCInput::read(uint8_t ch) { if (ch >= MIN(RC_INPUT_MAX_CHANNELS, _rcin.channel_count)) { return 0; } pthread_mutex_lock(&rcin_mutex); uint16_t v = _rcin.values[ch]; pthread_mutex_unlock(&rcin_mutex); return v; } uint8_t VRBRAINRCInput::read(uint16_t* periods, uint8_t len) { if (len > RC_INPUT_MAX_CHANNELS) { len = RC_INPUT_MAX_CHANNELS; } for (uint8_t i = 0; i < len; i++){ periods[i] = read(i); } return len; } const char *VRBRAINRCInput::input_source_name(uint8_t id) const { switch(id) { case input_rc_s::RC_INPUT_SOURCE_UNKNOWN: return "UNKNOWN"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_PPM: return "PX4FMU_PPM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_PPM: return "PX4IO_PPM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SPEKTRUM: return "PX4IO_SPEKTRUM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SBUS: return "PX4IO_SBUS"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_ST24: return "PX4IO_ST24"; case input_rc_s::RC_INPUT_SOURCE_MAVLINK: return "MAVLINK"; case input_rc_s::RC_INPUT_SOURCE_QURT: return "QURT"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SPEKTRUM: return "PX4FMU_SPEKTRUM"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SBUS: return "PX4FMU_SBUS"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_ST24: return "PX4FMU_ST24"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SUMD: return "PX4FMU_SUMD"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_DSM: return "PX4FMU_DSM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SUMD: return "PX4IO_SUMD"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SRXL: return "PX4FMU_SRXL"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SRXL: return "PX4IO_SRXL"; default: return "ERROR"; } } void VRBRAINRCInput::_timer_tick(void) { perf_begin(_perf_rcin); bool rc_updated = false; if (orb_check(_rc_sub, &rc_updated) == 0 && rc_updated) { pthread_mutex_lock(&rcin_mutex); orb_copy(ORB_ID(input_rc), _rc_sub, &_rcin); if (_rcin.rssi != 0 || _rssi != -1) { // always zero means not supported _rssi = _rcin.rssi; } pthread_mutex_unlock(&rcin_mutex); } // note, we rely on the vehicle code checking new_input() // and a timeout for the last valid input to handle failsafe perf_end(_perf_rcin); } bool VRBRAINRCInput::rc_bind(int dsmMode) { return true; } #endif