/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == Y6_FRAME #define YAW_DIRECTION 1 static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) | _BV(MOT_5) | _BV(MOT_6), g.rc_speed); #endif } static void motors_output_enable() { APM_RC.enable_out(MOT_1); APM_RC.enable_out(MOT_2); APM_RC.enable_out(MOT_3); APM_RC.enable_out(MOT_4); APM_RC.enable_out(MOT_5); APM_RC.enable_out(MOT_6); } static void output_motors_armed() { int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); // Multi-Wii Mix //left motor_out[MOT_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // LEFT TOP - CW motor_out[MOT_3] = g.rc_3.radio_out + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_LEFT - CCW //right motor_out[MOT_5] = (g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // RIGHT TOP - CW motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_RIGHT - CCW //back motor_out[MOT_6] = (g.rc_3.radio_out * g.top_bottom_ratio) - (g.rc_2.pwm_out * 4 / 3); // REAR TOP - CCW motor_out[MOT_4] = g.rc_3.radio_out - (g.rc_2.pwm_out * 4 / 3); // BOTTOM_REAR - CW //left motor_out[MOT_2] -= YAW_DIRECTION * g.rc_4.pwm_out; // LEFT TOP - CW motor_out[MOT_3] += YAW_DIRECTION * g.rc_4.pwm_out; // LEFT BOTTOM - CCW //right motor_out[MOT_5] -= YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT TOP - CW motor_out[MOT_1] += YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT BOTTOM - CCW //back motor_out[MOT_6] += YAW_DIRECTION * g.rc_4.pwm_out; // REAR TOP - CCW motor_out[MOT_4] -= YAW_DIRECTION * g.rc_4.pwm_out; // REAR BOTTOM - CW /* int roll_out = (float)g.rc_1.pwm_out * .866; int pitch_out = g.rc_2.pwm_out / 2; //left motor_out[MOT_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW //right motor_out[MOT_5] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW //back motor_out[MOT_6] = ((g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_2.pwm_out); // CCW TOP motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW // Yaw //top motor_out[MOT_2] += g.rc_4.pwm_out; // CCW motor_out[MOT_5] += g.rc_4.pwm_out; // CCW motor_out[MOT_6] += g.rc_4.pwm_out; // CCW //bottom motor_out[MOT_3] -= g.rc_4.pwm_out; // CW motor_out[MOT_1] -= g.rc_4.pwm_out; // CW motor_out[MOT_4] -= g.rc_4.pwm_out; // CW */ // TODO: add stability patch motor_out[MOT_1] = min(motor_out[MOT_1], out_max); motor_out[MOT_2] = min(motor_out[MOT_2], out_max); motor_out[MOT_3] = min(motor_out[MOT_3], out_max); motor_out[MOT_4] = min(motor_out[MOT_4], out_max); motor_out[MOT_5] = min(motor_out[MOT_5], out_max); motor_out[MOT_6] = min(motor_out[MOT_6], out_max); // limit output so motors don't stop motor_out[MOT_1] = max(motor_out[MOT_1], out_min); motor_out[MOT_2] = max(motor_out[MOT_2], out_min); motor_out[MOT_3] = max(motor_out[MOT_3], out_min); motor_out[MOT_4] = max(motor_out[MOT_4], out_min); motor_out[MOT_5] = max(motor_out[MOT_5], out_min); motor_out[MOT_6] = max(motor_out[MOT_6], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_3] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; motor_out[MOT_5] = g.rc_3.radio_min; motor_out[MOT_6] = g.rc_3.radio_min; } #endif // this filter slows the acceleration of motors vs the deceleration // Idea by Denny Rowland to help with his Yaw issue for(int8_t m = 0; m <= 6; m++){ int i = ch_of_mot(m); if(motor_filtered[i] < motor_out[i]){ motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2; }else{ // don't filter motor_filtered[i] = motor_out[i]; } } APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]); APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]); APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]); APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]); APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]); APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); APM_RC.Force_Out6_Out7(); #endif } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 8; i++){ motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); } static void output_motor_test() { motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_3] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; motor_out[MOT_5] = g.rc_3.radio_min; motor_out[MOT_6] = g.rc_3.radio_min; APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); delay(5000); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); delay(3000); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); delay(3000); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); delay(3000); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); delay(3000); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); delay(3000); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); APM_RC.OutputCh(MOT_3, motor_out[MOT_4]); APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); APM_RC.OutputCh(MOT_5, motor_out[MOT_5]); APM_RC.OutputCh(MOT_6, motor_out[MOT_6]); } #endif