/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "AP_InertialSensor_LSM9DS0.h" #include #include extern const AP_HAL::HAL &hal; #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT #define LSM9DS0_DRY_X_PIN RPI_GPIO_17 #define LSM9DS0_DRY_G_PIN RPI_GPIO_6 #else #define LSM9DS0_DRY_X_PIN -1 #define LSM9DS0_DRY_G_PIN -1 #endif #define LSM9DS0_G_WHOAMI 0xD4 #define LSM9DS0_XM_WHOAMI 0x49 //////////////////////////// // LSM9DS0 Gyro Registers // //////////////////////////// #define WHO_AM_I_G 0x0F #define CTRL_REG1_G 0x20 # define CTRL_REG1_G_DR_95Hz_BW_12500mHz (0x0 << 4) # define CTRL_REG1_G_DR_95Hz_BW_25Hz (0x1 << 4) # define CTRL_REG1_G_DR_190Hz_BW_12500mHz (0x4 << 4) # define CTRL_REG1_G_DR_190Hz_BW_25Hz (0x5 << 4) # define CTRL_REG1_G_DR_190Hz_BW_50Hz (0x6 << 4) # define CTRL_REG1_G_DR_190Hz_BW_70Hz (0x7 << 4) # define CTRL_REG1_G_DR_380Hz_BW_20Hz (0x8 << 4) # define CTRL_REG1_G_DR_380Hz_BW_25Hz (0x9 << 4) # define CTRL_REG1_G_DR_380Hz_BW_50Hz (0xA << 4) # define CTRL_REG1_G_DR_380Hz_BW_100Hz (0xB << 4) # define CTRL_REG1_G_DR_760Hz_BW_30Hz (0xC << 4) # define CTRL_REG1_G_DR_760Hz_BW_35Hz (0xD << 4) # define CTRL_REG1_G_DR_760Hz_BW_50Hz (0xE << 4) # define CTRL_REG1_G_DR_760Hz_BW_100Hz (0xF << 4) # define CTRL_REG1_G_PD (0x1 << 3) # define CTRL_REG1_G_ZEN (0x1 << 2) # define CTRL_REG1_G_YEN (0x1 << 1) # define CTRL_REG1_G_XEN (0x1 << 0) #define CTRL_REG2_G 0x21 # define CTRL_REG2_G_HPM_NORMAL_RESET (0x0 << 4) # define CTRL_REG2_G_HPM_REFERENCE (0x1 << 4) # define CTRL_REG2_G_HPM_NORMAL (0x2 << 4) # define CTRL_REG2_G_HPM_AUTORESET (0x3 << 4) # define CTRL_REG2_G_HPCF_0 (0x0 << 0) # define CTRL_REG2_G_HPCF_1 (0x1 << 0) # define CTRL_REG2_G_HPCF_2 (0x2 << 0) # define CTRL_REG2_G_HPCF_3 (0x3 << 0) # define CTRL_REG2_G_HPCF_4 (0x4 << 0) # define CTRL_REG2_G_HPCF_5 (0x5 << 0) # define CTRL_REG2_G_HPCF_6 (0x6 << 0) # define CTRL_REG2_G_HPCF_7 (0x7 << 0) # define CTRL_REG2_G_HPCF_8 (0x8 << 0) # define CTRL_REG2_G_HPCF_9 (0x9 << 0) #define CTRL_REG3_G 0x22 # define CTRL_REG3_G_I1_INT1 (0x1 << 7) # define CTRL_REG3_G_I1_BOOT (0x1 << 6) # define CTRL_REG3_G_H_LACTIVE (0x1 << 5) # define CTRL_REG3_G_PP_OD (0x1 << 4) # define CTRL_REG3_G_I2_DRDY (0x1 << 3) # define CTRL_REG3_G_I2_WTM (0x1 << 2) # define CTRL_REG3_G_I2_ORUN (0x1 << 1) # define CTRL_REG3_G_I2_EMPTY (0x1 << 0) #define CTRL_REG4_G 0x23 # define CTRL_REG4_G_BDU (0x1 << 7) # define CTRL_REG4_G_BLE (0x1 << 6) # define CTRL_REG4_G_FS_245DPS (0x0 << 4) # define CTRL_REG4_G_FS_500DPS (0x1 << 4) # define CTRL_REG4_G_FS_2000DPS (0x2 << 4) # define CTRL_REG4_G_ST_NORMAL (0x0 << 1) # define CTRL_REG4_G_ST_0 (0x1 << 1) # define CTRL_REG4_G_ST_1 (0x3 << 1) # define CTRL_REG4_G_SIM_3WIRE (0x1 << 0) #define CTRL_REG5_G 0x24 # define CTRL_REG5_G_BOOT (0x1 << 7) # define CTRL_REG5_G_FIFO_EN (0x1 << 6) # define CTRL_REG5_G_HPEN (0x1 << 4) # define CTRL_REG5_G_INT1_SEL_00 (0x0 << 2) # define CTRL_REG5_G_INT1_SEL_01 (0x1 << 2) # define CTRL_REG5_G_INT1_SEL_10 (0x2 << 2) # define CTRL_REG5_G_INT1_SEL_11 (0x3 << 2) # define CTRL_REG5_G_OUT_SEL_00 (0x0 << 0) # define CTRL_REG5_G_OUT_SEL_01 (0x1 << 0) # define CTRL_REG5_G_OUT_SEL_10 (0x2 << 0) # define CTRL_REG5_G_OUT_SEL_11 (0x3 << 0) #define REFERENCE_G 0x25 #define STATUS_REG_G 0x27 # define STATUS_REG_G_ZYXOR (0x1 << 7) # define STATUS_REG_G_ZOR (0x1 << 6) # define STATUS_REG_G_YOR (0x1 << 5) # define STATUS_REG_G_XOR (0x1 << 4) # define STATUS_REG_G_ZYXDA (0x1 << 3) # define STATUS_REG_G_ZDA (0x1 << 2) # define STATUS_REG_G_YDA (0x1 << 1) # define STATUS_REG_G_XDA (0x1 << 0) #define OUT_X_L_G 0x28 #define OUT_X_H_G 0x29 #define OUT_Y_L_G 0x2A #define OUT_Y_H_G 0x2B #define OUT_Z_L_G 0x2C #define OUT_Z_H_G 0x2D #define FIFO_CTRL_REG_G 0x2E # define FIFO_CTRL_REG_G_FM_BYPASS (0x0 << 5) # define FIFO_CTRL_REG_G_FM_FIFO (0x1 << 5) # define FIFO_CTRL_REG_G_FM_STREAM (0x2 << 5) # define FIFO_CTRL_REG_G_FM_STREAM_TO_FIFO (0x3 << 5) # define FIFO_CTRL_REG_G_FM_BYPASS_TO_STREAM (0x4 << 5) # define FIFO_CTRL_REG_G_WTM_MASK 0x1F #define FIFO_SRC_REG_G 0x2F # define FIFO_SRC_REG_G_WTM (0x1 << 7) # define FIFO_SRC_REG_G_OVRN (0x1 << 6) # define FIFO_SRC_REG_G_EMPTY (0x1 << 5) # define FIFO_SRC_REG_G_FSS_MASK 0x1F #define INT1_CFG_G 0x30 # define INT1_CFG_G_AND_OR (0x1 << 7) # define INT1_CFG_G_LIR (0x1 << 6) # define INT1_CFG_G_ZHIE (0x1 << 5) # define INT1_CFG_G_ZLIE (0x1 << 4) # define INT1_CFG_G_YHIE (0x1 << 3) # define INT1_CFG_G_YLIE (0x1 << 2) # define INT1_CFG_G_XHIE (0x1 << 1) # define INT1_CFG_G_XLIE (0x1 << 0) #define INT1_SRC_G 0x31 # define INT1_SRC_G_IA (0x1 << 6) # define INT1_SRC_G_ZH (0x1 << 5) # define INT1_SRC_G_ZL (0x1 << 4) # define INT1_SRC_G_YH (0x1 << 3) # define INT1_SRC_G_YL (0x1 << 2) # define INT1_SRC_G_XH (0x1 << 1) # define INT1_SRC_G_XL (0x1 << 0) #define INT1_THS_XH_G 0x32 #define INT1_THS_XL_G 0x33 #define INT1_THS_YH_G 0x34 #define INT1_THS_YL_G 0x35 #define INT1_THS_ZH_G 0x36 #define INT1_THS_ZL_G 0x37 #define INT1_DURATION_G 0x38 # define INT1_DURATION_G_WAIT (0x1 << 7) # define INT1_DURATION_G_D_MASK 0x7F ////////////////////////////////////////// // LSM9DS0 Accel/Magneto (XM) Registers // ////////////////////////////////////////// #define OUT_TEMP_L_XM 0x05 #define OUT_TEMP_H_XM 0x06 #define STATUS_REG_M 0x07 # define STATUS_REG_M_ZYXMOR (0x1 << 7) # define STATUS_REG_M_ZMOR (0x1 << 6) # define STATUS_REG_M_YMOR (0x1 << 5) # define STATUS_REG_M_XMOR (0x1 << 4) # define STATUS_REG_M_ZYXMDA (0x1 << 3) # define STATUS_REG_M_ZMDA (0x1 << 2) # define STATUS_REG_M_YMDA (0x1 << 1) # define STATUS_REG_M_XMDA (0x1 << 0) #define OUT_X_L_M 0x08 #define OUT_X_H_M 0x09 #define OUT_Y_L_M 0x0A #define OUT_Y_H_M 0x0B #define OUT_Z_L_M 0x0C #define OUT_Z_H_M 0x0D #define WHO_AM_I_XM 0x0F #define INT_CTRL_REG_M 0x12 # define INT_CTRL_REG_M_XMIEN (0x1 << 7) # define INT_CTRL_REG_M_YMIEN (0x1 << 6) # define INT_CTRL_REG_M_ZMIEN (0x1 << 5) # define INT_CTRL_REG_M_PP_OD (0x1 << 4) # define INT_CTRL_REG_M_IEA (0x1 << 3) # define INT_CTRL_REG_M_IEL (0x1 << 2) # define INT_CTRL_REG_M_4D (0x1 << 1) # define INT_CTRL_REG_M_MIEN (0x1 << 0) #define INT_SRC_REG_M 0x13 # define INT_SRC_REG_M_M_PTH_X (0x1 << 7) # define INT_SRC_REG_M_M_PTH_Y (0x1 << 6) # define INT_SRC_REG_M_M_PTH_Z (0x1 << 5) # define INT_SRC_REG_M_M_NTH_X (0x1 << 4) # define INT_SRC_REG_M_M_NTH_Y (0x1 << 3) # define INT_SRC_REG_M_M_NTH_Z (0x1 << 2) # define INT_SRC_REG_M_MROI (0x1 << 1) # define INT_SRC_REG_M_MINT (0x1 << 0) #define INT_THS_L_M 0x14 #define INT_THS_H_M 0x15 #define OFFSET_X_L_M 0x16 #define OFFSET_X_H_M 0x17 #define OFFSET_Y_L_M 0x18 #define OFFSET_Y_H_M 0x19 #define OFFSET_Z_L_M 0x1A #define OFFSET_Z_H_M 0x1B #define REFERENCE_X 0x1C #define REFERENCE_Y 0x1D #define REFERENCE_Z 0x1E #define CTRL_REG0_XM 0x1F # define CTRL_REG0_XM_B00T (0x1 << 7) # define CTRL_REG0_XM_FIFO_EN (0x1 << 6) # define CTRL_REG0_XM_WTM_EN (0x1 << 5) # define CTRL_REG0_XM_HP_CLICK (0x1 << 2) # define CTRL_REG0_XM_HPIS1 (0x1 << 1) # define CTRL_REG0_XM_HPIS2 (0x1 << 0) #define CTRL_REG1_XM 0x20 # define CTRL_REG1_XM_AODR_POWERDOWN (0x0 << 4) # define CTRL_REG1_XM_AODR_3125mHz (0x1 << 4) # define CTRL_REG1_XM_AODR_6250mHz (0x2 << 4) # define CTRL_REG1_XM_AODR_12500mHz (0x3 << 4) # define CTRL_REG1_XM_AODR_25Hz (0x4 << 4) # define CTRL_REG1_XM_AODR_50Hz (0x5 << 4) # define CTRL_REG1_XM_AODR_100Hz (0x6 << 4) # define CTRL_REG1_XM_AODR_200Hz (0x7 << 4) # define CTRL_REG1_XM_AODR_400Hz (0x8 << 4) # define CTRL_REG1_XM_AODR_800Hz (0x9 << 4) # define CTRL_REG1_XM_AODR_1600Hz (0xA << 4) # define CTRL_REG1_XM_BDU (0x1 << 3) # define CTRL_REG1_XM_AZEN (0x1 << 2) # define CTRL_REG1_XM_AYEN (0x1 << 1) # define CTRL_REG1_XM_AXEN (0x1 << 0) #define CTRL_REG2_XM 0x21 # define CTRL_REG2_XM_ABW_773Hz (0x0 << 6) # define CTRL_REG2_XM_ABW_194Hz (0x1 << 6) # define CTRL_REG2_XM_ABW_362Hz (0x2 << 6) # define CTRL_REG2_XM_ABW_50Hz (0x3 << 6) # define CTRL_REG2_XM_AFS_2G (0x0 << 3) # define CTRL_REG2_XM_AFS_4G (0x1 << 3) # define CTRL_REG2_XM_AFS_6G (0x2 << 3) # define CTRL_REG2_XM_AFS_8G (0x3 << 3) # define CTRL_REG2_XM_AFS_16G (0x4 << 3) # define CTRL_REG2_XM_AST_NORMAL (0x0 << 1) # define CTRL_REG2_XM_AST_POSITIVE (0x1 << 1) # define CTRL_REG2_XM_AST_NEGATIVE (0x2 << 1) # define CTRL_REG2_XM_SIM_3WIRE (0x1 << 0) #define CTRL_REG3_XM 0x22 # define CTRL_REG3_XM_P1_BOOT (0x1 << 7) # define CTRL_REG3_XM_P1_TAP (0x1 << 6) # define CTRL_REG3_XM_P1_INT1 (0x1 << 5) # define CTRL_REG3_XM_P1_INT2 (0x1 << 4) # define CTRL_REG3_XM_P1_INTM (0x1 << 3) # define CTRL_REG3_XM_P1_DRDYA (0x1 << 2) # define CTRL_REG3_XM_P1_DRDYM (0x1 << 1) # define CTRL_REG3_XM_P1_EMPTY (0x1 << 0) #define CTRL_REG4_XM 0x23 # define CTRL_REG4_XM_P2_TAP (0x1 << 7) # define CTRL_REG4_XM_P2_INT1 (0x1 << 6) # define CTRL_REG4_XM_P2_INT2 (0x1 << 5) # define CTRL_REG4_XM_P2_INTM (0x1 << 4) # define CTRL_REG4_XM_P2_DRDYA (0x1 << 3) # define CTRL_REG4_XM_P2_DRDYM (0x1 << 2) # define CTRL_REG4_XM_P2_OVERRUN (0x1 << 1) # define CTRL_REG4_XM_P2_WTM (0x1 << 0) #define CTRL_REG5_XM 0x24 # define CTRL_REG5_XM_TEMP_EN (0x1 << 7) # define CTRL_REG5_XM_M_RES_LOW (0x0 << 5) # define CTRL_REG5_XM_M_RES_HIGH (0x3 << 5) # define CTRL_REG5_XM_ODR_3125mHz (0x0 << 2) # define CTRL_REG5_XM_ODR_6250mHz (0x1 << 2) # define CTRL_REG5_XM_ODR_12500mHz (0x2 << 2) # define CTRL_REG5_XM_ODR_25Hz (0x3 << 2) # define CTRL_REG5_XM_ODR_50Hz (0x4 << 2) # define CTRL_REG5_XM_ODR_100Hz (0x5 << 2) # define CTRL_REG5_XM_LIR2 (0x1 << 1) # define CTRL_REG5_XM_LIR1 (0x1 << 0) #define CTRL_REG6_XM 0x25 # define CTRL_REG6_XM_MFS_2Gs (0x0 << 5) # define CTRL_REG6_XM_MFS_4Gs (0x1 << 5) # define CTRL_REG6_XM_MFS_8Gs (0x2 << 5) # define CTRL_REG6_XM_MFS_12Gs (0x3 << 5) #define CTRL_REG7_XM 0x26 # define CTRL_REG7_XM_AHPM_NORMAL_RESET (0x0 << 6) # define CTRL_REG7_XM_AHPM_REFERENCE (0x1 << 6) # define CTRL_REG7_XM_AHPM_NORMAL (0x2 << 6) # define CTRL_REG7_XM_AHPM_AUTORESET (0x3 << 6) # define CTRL_REG7_XM_AFDS (0x1 << 5) # define CTRL_REG7_XM_MLP (0x1 << 2) # define CTRL_REG7_XM_MD_CONTINUOUS (0x0 << 0) # define CTRL_REG7_XM_MD_SINGLE (0x1 << 0) # define CTRL_REG7_XM_MD_POWERDOWN (0x2 << 0) #define STATUS_REG_A 0x27 # define STATUS_REG_A_ZYXAOR (0x1 << 7) # define STATUS_REG_A_ZAOR (0x1 << 6) # define STATUS_REG_A_YAOR (0x1 << 5) # define STATUS_REG_A_XAOR (0x1 << 4) # define STATUS_REG_A_ZYXADA (0x1 << 3) # define STATUS_REG_A_ZADA (0x1 << 2) # define STATUS_REG_A_YADA (0x1 << 1) # define STATUS_REG_A_XADA (0x1 << 0) #define OUT_X_L_A 0x28 #define OUT_X_H_A 0x29 #define OUT_Y_L_A 0x2A #define OUT_Y_H_A 0x2B #define OUT_Z_L_A 0x2C #define OUT_Z_H_A 0x2D #define FIFO_CTRL_REG 0x2E # define FIFO_CTRL_REG_FM_BYPASS (0x0 << 5) # define FIFO_CTRL_REG_FM_FIFO (0x1 << 5) # define FIFO_CTRL_REG_FM_STREAM (0x2 << 5) # define FIFO_CTRL_REG_FM_STREAM_TO_FIFO (0x3 << 5) # define FIFO_CTRL_REG_FM_BYPASS_TO_STREAM (0x4 << 5) # define FIFO_CTRL_REG_FTH_MASK 0x1F #define FIFO_SRC_REG 0x2F # define FIFO_SRC_REG_WTM (0x1 << 7) # define FIFO_SRC_REG_OVRN (0x1 << 6) # define FIFO_SRC_REG_EMPTY (0x1 << 5) # define FIFO_SRC_REG_FSS_MASK 0x1F #define INT_GEN_1_REG 0x30 # define INT_GEN_1_REG_AOI (0x1 << 7) # define INT_GEN_1_REG_6D (0x1 << 6) # define INT_GEN_1_REG_ZHIE_ZUPE (0x1 << 5) # define INT_GEN_1_REG_ZLIE_ZDOWNE (0x1 << 4) # define INT_GEN_1_REG_YHIE_YUPE (0x1 << 3) # define INT_GEN_1_REG_YLIE_YDOWNE (0x1 << 2) # define INT_GEN_1_REG_XHIE_XUPE (0x1 << 1) # define INT_GEN_1_REG_XLIE_XDOWNE (0x1 << 0) #define INT_GEN_1_SRC 0x31 # define INT_GEN_1_SRC_IA (0x1 << 6) # define INT_GEN_1_SRC_ZH (0x1 << 5) # define INT_GEN_1_SRC_ZL (0x1 << 4) # define INT_GEN_1_SRC_YH (0x1 << 3) # define INT_GEN_1_SRC_YL (0x1 << 2) # define INT_GEN_1_SRC_XH (0x1 << 1) # define INT_GEN_1_SRC_XL (0x1 << 0) #define INT_GEN_1_THS 0x32 #define INT_GEN_1_DURATION 0x33 #define INT_GEN_2_REG 0x34 # define INT_GEN_2_REG_AOI (0x1 << 7) # define INT_GEN_2_REG_6D (0x1 << 6) # define INT_GEN_2_REG_ZHIE_ZUPE (0x1 << 5) # define INT_GEN_2_REG_ZLIE_ZDOWNE (0x1 << 4) # define INT_GEN_2_REG_YHIE_YUPE (0x1 << 3) # define INT_GEN_2_REG_YLIE_YDOWNE (0x1 << 2) # define INT_GEN_2_REG_XHIE_XUPE (0x1 << 1) # define INT_GEN_2_REG_XLIE_XDOWNE (0x1 << 0) #define INT_GEN_2_SRC 0x35 # define INT_GEN_2_SRC_IA (0x1 << 6) # define INT_GEN_2_SRC_ZH (0x1 << 5) # define INT_GEN_2_SRC_ZL (0x1 << 4) # define INT_GEN_2_SRC_YH (0x1 << 3) # define INT_GEN_2_SRC_YL (0x1 << 2) # define INT_GEN_2_SRC_XH (0x1 << 1) # define INT_GEN_2_SRC_XL (0x1 << 0) #define INT_GEN_2_THS 0x36 #define INT_GEN_2_DURATION 0x37 #define CLICK_CFG 0x38 # define CLICK_CFG_ZD (0x1 << 5) # define CLICK_CFG_ZS (0x1 << 4) # define CLICK_CFG_YD (0x1 << 3) # define CLICK_CFG_YS (0x1 << 2) # define CLICK_CFG_XD (0x1 << 1) # define CLICK_CFG_XS (0x1 << 0) #define CLICK_SRC 0x39 # define CLICK_SRC_IA (0x1 << 6) # define CLICK_SRC_DCLICK (0x1 << 5) # define CLICK_SRC_SCLICK (0x1 << 4) # define CLICK_SRC_SIGN (0x1 << 3) # define CLICK_SRC_Z (0x1 << 2) # define CLICK_SRC_Y (0x1 << 1) # define CLICK_SRC_X (0x1 << 0) #define CLICK_THS 0x3A #define TIME_LIMIT 0x3B #define TIME_LATENCY 0x3C #define TIME_WINDOW 0x3D #define ACT_THS 0x3E #define ACT_DUR 0x3F AP_InertialSensor_LSM9DS0::AP_InertialSensor_LSM9DS0(AP_InertialSensor &imu, AP_HAL::OwnPtr dev_gyro, AP_HAL::OwnPtr dev_accel, int drdy_pin_num_a, int drdy_pin_num_g, enum Rotation rotation) : AP_InertialSensor_Backend(imu) , _dev_gyro(std::move(dev_gyro)) , _dev_accel(std::move(dev_accel)) , _drdy_pin_num_a(drdy_pin_num_a) , _drdy_pin_num_g(drdy_pin_num_g) , _rotation(rotation) { } AP_InertialSensor_Backend *AP_InertialSensor_LSM9DS0::probe(AP_InertialSensor &_imu, AP_HAL::OwnPtr dev_gyro, AP_HAL::OwnPtr dev_accel, enum Rotation rotation) { if (!dev_gyro || !dev_accel) { return nullptr; } AP_InertialSensor_LSM9DS0 *sensor = new AP_InertialSensor_LSM9DS0(_imu, std::move(dev_gyro), std::move(dev_accel), LSM9DS0_DRY_X_PIN, LSM9DS0_DRY_G_PIN, rotation); if (!sensor || !sensor->_init_sensor()) { delete sensor; return nullptr; } return sensor; } bool AP_InertialSensor_LSM9DS0::_init_sensor() { /* * Same semaphore for both since they necessarily share the same bus (with * different CS) */ _spi_sem = _dev_gyro->get_semaphore(); if (_drdy_pin_num_a >= 0) { _drdy_pin_a = hal.gpio->channel(_drdy_pin_num_a); if (_drdy_pin_a == nullptr) { AP_HAL::panic("LSM9DS0: null accel data-ready GPIO channel\n"); } _drdy_pin_a->mode(HAL_GPIO_INPUT); } if (_drdy_pin_num_g >= 0) { _drdy_pin_g = hal.gpio->channel(_drdy_pin_num_g); if (_drdy_pin_g == nullptr) { AP_HAL::panic("LSM9DS0: null gyro data-ready GPIO channel\n"); } _drdy_pin_g->mode(HAL_GPIO_INPUT); } bool success = _hardware_init(); #if LSM9DS0_DEBUG _dump_registers(); #endif return success; } bool AP_InertialSensor_LSM9DS0::_hardware_init() { if (!_spi_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return false; } uint8_t whoami; uint8_t tries; whoami = _register_read_g(WHO_AM_I_G); if (whoami != LSM9DS0_G_WHOAMI) { hal.console->printf("LSM9DS0: unexpected gyro WHOAMI 0x%x\n", (unsigned)whoami); goto fail_whoami; } whoami = _register_read_xm(WHO_AM_I_XM); if (whoami != LSM9DS0_XM_WHOAMI) { hal.console->printf("LSM9DS0: unexpected acc/mag WHOAMI 0x%x\n", (unsigned)whoami); goto fail_whoami; } for (tries = 0; tries < 5; tries++) { _dev_gyro->set_speed(AP_HAL::Device::SPEED_LOW); _dev_accel->set_speed(AP_HAL::Device::SPEED_LOW); _gyro_init(); _accel_init(); _dev_gyro->set_speed(AP_HAL::Device::SPEED_HIGH); _dev_accel->set_speed(AP_HAL::Device::SPEED_HIGH); hal.scheduler->delay(10); if (_accel_data_ready() && _gyro_data_ready()) { break; } #if LSM9DS0_DEBUG _dump_registers(); #endif } if (tries == 5) { hal.console->println("Failed to boot LSM9DS0 5 times\n"); goto fail_tries; } _spi_sem->give(); return true; fail_tries: fail_whoami: _spi_sem->give(); return false; } /* start the sensor going */ void AP_InertialSensor_LSM9DS0::start(void) { _gyro_instance = _imu.register_gyro(760, _dev_gyro->get_bus_id_devtype(DEVTYPE_GYR_L3GD20)); _accel_instance = _imu.register_accel(800, _dev_accel->get_bus_id_devtype(DEVTYPE_ACC_LSM303D)); set_gyro_orientation(_gyro_instance, _rotation); set_accel_orientation(_accel_instance, _rotation); _set_accel_max_abs_offset(_accel_instance, 5.0f); /* start the timer process to read samples */ _dev_gyro->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_LSM9DS0::_poll_data, bool)); } uint8_t AP_InertialSensor_LSM9DS0::_register_read_xm(uint8_t reg) { uint8_t val = 0; /* set read bit */ reg |= 0x80; _dev_accel->read_registers(reg, &val, 1); return val; } uint8_t AP_InertialSensor_LSM9DS0::_register_read_g(uint8_t reg) { uint8_t val = 0; /* set read bit */ reg |= 0x80; _dev_gyro->read_registers(reg, &val, 1); return val; } void AP_InertialSensor_LSM9DS0::_register_write_xm(uint8_t reg, uint8_t val) { _dev_accel->write_register(reg, val); } void AP_InertialSensor_LSM9DS0::_register_write_g(uint8_t reg, uint8_t val) { _dev_gyro->write_register(reg, val); } void AP_InertialSensor_LSM9DS0::_gyro_disable_i2c() { uint8_t retries = 10; while (retries--) { // add retries uint8_t a = _register_read_g(0x05); _register_write_g(0x05, (0x20 | a)); if (_register_read_g(0x05) == (a | 0x20)) { return; } } AP_HAL::panic("LSM9DS0_G: Unable to disable I2C"); } void AP_InertialSensor_LSM9DS0::_accel_disable_i2c() { uint8_t a = _register_read_xm(0x02); _register_write_xm(0x02, (0x10 | a)); a = _register_read_xm(0x02); _register_write_xm(0x02, (0xF7 & a)); a = _register_read_xm(0x15); _register_write_xm(0x15, (0x80 | a)); a = _register_read_xm(0x02); _register_write_xm(0x02, (0xE7 & a)); } void AP_InertialSensor_LSM9DS0::_gyro_init() { _gyro_disable_i2c(); hal.scheduler->delay(1); _register_write_g(CTRL_REG1_G, CTRL_REG1_G_DR_760Hz_BW_50Hz | CTRL_REG1_G_PD | CTRL_REG1_G_ZEN | CTRL_REG1_G_YEN | CTRL_REG1_G_XEN); hal.scheduler->delay(1); _register_write_g(CTRL_REG2_G, 0x00); hal.scheduler->delay(1); /* * Gyro data ready on DRDY_G */ _register_write_g(CTRL_REG3_G, CTRL_REG3_G_I2_DRDY); hal.scheduler->delay(1); _register_write_g(CTRL_REG4_G, CTRL_REG4_G_BDU | CTRL_REG4_G_FS_2000DPS); _set_gyro_scale(G_SCALE_2000DPS); hal.scheduler->delay(1); _register_write_g(CTRL_REG5_G, 0x00); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_accel_init() { _accel_disable_i2c(); hal.scheduler->delay(1); _register_write_xm(CTRL_REG0_XM, 0x00); hal.scheduler->delay(1); _register_write_xm(CTRL_REG1_XM, CTRL_REG1_XM_AODR_1600Hz | CTRL_REG1_XM_BDU | CTRL_REG1_XM_AZEN | CTRL_REG1_XM_AYEN | CTRL_REG1_XM_AXEN); hal.scheduler->delay(1); _register_write_xm(CTRL_REG2_XM, CTRL_REG2_XM_ABW_194Hz | CTRL_REG2_XM_AFS_16G); _set_accel_scale(A_SCALE_16G); hal.scheduler->delay(1); /* Accel data ready on INT1 */ _register_write_xm(CTRL_REG3_XM, CTRL_REG3_XM_P1_DRDYA); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_set_gyro_scale(gyro_scale scale) { /* scales values from datasheet in mdps/digit */ switch (scale) { case G_SCALE_245DPS: _gyro_scale = 8.75; break; case G_SCALE_500DPS: _gyro_scale = 17.50; break; case G_SCALE_2000DPS: _gyro_scale = 70; break; } /* convert mdps/digit to dps/digit */ _gyro_scale /= 1000; /* convert dps/digit to (rad/s)/digit */ _gyro_scale *= DEG_TO_RAD; } void AP_InertialSensor_LSM9DS0::_set_accel_scale(accel_scale scale) { /* * Possible accelerometer scales (and their register bit settings) are: * 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an * algorithm to calculate g/(ADC tick) based on that 3-bit value: */ _accel_scale = (((float) scale + 1.0f) * 2.0f) / 32768.0f; if (scale == A_SCALE_16G) { /* the datasheet shows an exception for +-16G */ _accel_scale = 0.000732; } /* convert to G/LSB to (m/s/s)/LSB */ _accel_scale *= GRAVITY_MSS; } /** * Timer process to poll for new data from the LSM9DS0. */ bool AP_InertialSensor_LSM9DS0::_poll_data() { if (_gyro_data_ready()) { _read_data_transaction_g(); } if (_accel_data_ready()) { _read_data_transaction_a(); } return true; } bool AP_InertialSensor_LSM9DS0::_accel_data_ready() { if (_drdy_pin_a != nullptr) { return _drdy_pin_a->read() != 0; } uint8_t status = _register_read_xm(STATUS_REG_A); return status & STATUS_REG_A_ZYXADA; } bool AP_InertialSensor_LSM9DS0::_gyro_data_ready() { if (_drdy_pin_g != nullptr) { return _drdy_pin_g->read() != 0; } uint8_t status = _register_read_g(STATUS_REG_G); return status & STATUS_REG_G_ZYXDA; } void AP_InertialSensor_LSM9DS0::_read_data_transaction_a() { struct sensor_raw_data raw_data = { }; const uint8_t reg = OUT_X_L_A | 0xC0; if (!_dev_accel->transfer(®, 1, (uint8_t *) &raw_data, sizeof(raw_data))) { hal.console->printf("LSM9DS0: error reading accelerometer\n"); return; } Vector3f accel_data(raw_data.x, -raw_data.y, -raw_data.z); accel_data *= _accel_scale; _rotate_and_correct_accel(_accel_instance, accel_data); _notify_new_accel_raw_sample(_accel_instance, accel_data); } /* * read from the data registers and update filtered data */ void AP_InertialSensor_LSM9DS0::_read_data_transaction_g() { struct sensor_raw_data raw_data = { }; const uint8_t reg = OUT_X_L_G | 0xC0; if (!_dev_gyro->transfer(®, 1, (uint8_t *) &raw_data, sizeof(raw_data))) { hal.console->printf("LSM9DS0: error reading gyroscope\n"); return; } Vector3f gyro_data(raw_data.x, -raw_data.y, -raw_data.z); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT // LSM303D on RasPilot // FIXME: wrong way to provide rotation per-board gyro_data.rotate(ROTATION_YAW_90); #endif gyro_data *= _gyro_scale; _rotate_and_correct_gyro(_gyro_instance, gyro_data); _notify_new_gyro_raw_sample(_gyro_instance, gyro_data); } bool AP_InertialSensor_LSM9DS0::update() { update_gyro(_gyro_instance); update_accel(_accel_instance); return true; } #if LSM9DS0_DEBUG /* dump all config registers - used for debug */ void AP_InertialSensor_LSM9DS0::_dump_registers(void) { hal.console->println("LSM9DS0 registers:"); hal.console->println("Gyroscope registers:"); const uint8_t first = OUT_TEMP_L_XM; const uint8_t last = ACT_DUR; for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_g(reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); hal.console->println("Accelerometer and Magnetometers registers:"); for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_xm(reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } #endif