/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* copied from AP_InertialSensor_Invensense, removed aux bus and FIFO usage this driver can be common Invensense driver for boards with connected DataReady pin if HAL API will be extended to support IO_Complete callbacks driver for all supported Invensense IMUs, including MPU6000, MPU9250 ICM-20608 and ICM-20602 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(INVENSENSE_DRDY_PIN) #include #include #include #include #include #include #include #include #include "AP_InertialSensor_Revo.h" extern const AP_HAL::HAL& hal; #define debug(fmt, args ...) do {printf("MPU: " fmt "\n", ## args); } while(0) /* EXT_SYNC allows for frame synchronisation with an external device such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit */ #ifndef INVENSENSE_EXT_SYNC_ENABLE #define INVENSENSE_EXT_SYNC_ENABLE 0 #endif // common registers #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 #define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A # define MPUREG_CONFIG_EXT_SYNC_SHIFT 3 # define MPUREG_CONFIG_EXT_SYNC_GX 0x02 # define MPUREG_CONFIG_EXT_SYNC_GY 0x03 # define MPUREG_CONFIG_EXT_SYNC_GZ 0x04 # define MPUREG_CONFIG_EXT_SYNC_AX 0x05 # define MPUREG_CONFIG_EXT_SYNC_AY 0x06 # define MPUREG_CONFIG_EXT_SYNC_AZ 0x07 # define MPUREG_CONFIG_FIFO_MODE_STOP 0x40 #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 # define BIT_TEMP_FIFO_EN 0x80 # define BIT_XG_FIFO_EN 0x40 # define BIT_YG_FIFO_EN 0x20 # define BIT_ZG_FIFO_EN 0x10 # define BIT_ACCEL_FIFO_EN 0x08 # define BIT_SLV2_FIFO_EN 0x04 # define BIT_SLV1_FIFO_EN 0x02 # define BIT_SLV0_FIFI_EN0 0x01 #define MPUREG_I2C_MST_CTRL 0x24 # define BIT_I2C_MST_P_NSR 0x10 # define BIT_I2C_MST_CLK_400KHZ 0x0D #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV1_ADDR 0x28 #define MPUREG_I2C_SLV2_ADDR 0x2B #define MPUREG_I2C_SLV3_ADDR 0x2E #define MPUREG_INT_PIN_CFG 0x37 # define BIT_BYPASS_EN 0x02 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs # define BIT_LATCH_INT_EN 0x20 // latch data ready pin #define MPUREG_I2C_SLV4_CTRL 0x34 #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 #define MPUREG_I2C_MST_DELAY_CTRL 0x67 # define BIT_I2C_SLV0_DLY_EN 0x01 # define BIT_I2C_SLV1_DLY_EN 0x02 # define BIT_I2C_SLV2_DLY_EN 0x04 # define BIT_I2C_SLV3_DLY_EN 0x08 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 // ICM20608 specific registers #define ICMREG_ACCEL_CONFIG2 0x1D #define ICM_ACC_DLPF_CFG_1046HZ_NOLPF 0x00 #define ICM_ACC_DLPF_CFG_218HZ 0x01 #define ICM_ACC_DLPF_CFG_99HZ 0x02 #define ICM_ACC_DLPF_CFG_44HZ 0x03 #define ICM_ACC_DLPF_CFG_21HZ 0x04 #define ICM_ACC_DLPF_CFG_10HZ 0x05 #define ICM_ACC_DLPF_CFG_5HZ 0x06 #define ICM_ACC_DLPF_CFG_420HZ 0x07 #define ICM_ACC_FCHOICE_B 0x08 /* this is an undocumented register which if set incorrectly results in getting a 2.7m/s/s offset on the Y axis of the accelerometer */ #define MPUREG_ICM_UNDOC1 0x11 #define MPUREG_ICM_UNDOC1_VALUE 0xc9 // WHOAMI values #define MPU_WHOAMI_6000 0x68 #define MPU_WHOAMI_20608 0xaf #define MPU_WHOAMI_20602 0x12 #define MPU_WHOAMI_6500 0x70 #define MPU_WHOAMI_MPU9250 0x71 #define MPU_WHOAMI_MPU9255 0x73 #define BIT_READ_FLAG 0x80 #define BIT_I2C_SLVX_EN 0x80 // Configuration bits MPU 3000 and MPU 6000 (not revised)? #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 // Product ID Description for MPU6000. Used to detect buggy chips // high 4 bits low 4 bits // Product Name Product Revision #define MPU6000ES_REV_C4 0x14 // 0001 0100 #define MPU6000ES_REV_C5 0x15 // 0001 0101 #define MPU6000ES_REV_D6 0x16 // 0001 0110 #define MPU6000ES_REV_D7 0x17 // 0001 0111 #define MPU6000ES_REV_D8 0x18 // 0001 1000 #define MPU6000_REV_C4 0x54 // 0101 0100 #define MPU6000_REV_C5 0x55 // 0101 0101 #define MPU6000_REV_D6 0x56 // 0101 0110 #define MPU6000_REV_D7 0x57 // 0101 0111 #define MPU6000_REV_D8 0x58 // 0101 1000 #define MPU6000_REV_D9 0x59 // 0101 1001 #define MPU_SAMPLE_SIZE 14 #define MPU_FIFO_DOWNSAMPLE_COUNT 8 #define MPU_FIFO_BUFFER_LEN 64// ms of samples #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) #define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]) /* * RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ static const float GYRO_SCALE = (0.0174532f / 16.4f); #ifdef MPU_DEBUG_LOG mpu_log_item AP_InertialSensor_Revo::mpu_log[MPU_LOG_SIZE] IN_CCM; uint16_t AP_InertialSensor_Revo::mpu_log_ptr=0; #endif /* * RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPU6k * variants however */ AP_InertialSensor_Revo::AP_InertialSensor_Revo(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) : AP_InertialSensor_Backend(imu) , _temp_filter(1000, 1) , _rotation(rotation) , _dev(std::move(dev)) , nodata_count(0) , accel_len(0) { } AP_InertialSensor_Revo::~AP_InertialSensor_Revo() { if (_fifo_buffer != nullptr) { hal.util->free_type(_fifo_buffer, MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE); } } AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) { return nullptr; } AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) { if (!dev) { return nullptr; } AP_InertialSensor_Revo *sensor; dev->set_read_flag(0x80); sensor = new AP_InertialSensor_Revo(imu, std::move(dev), rotation); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } if (sensor->_mpu_type == Invensense_MPU9250) { sensor->_id = HAL_INS_MPU9250_SPI; } else if (sensor->_mpu_type == Invensense_MPU6500) { sensor->_id = HAL_INS_MPU6500; } else { sensor->_id = HAL_INS_MPU60XX_SPI; } return sensor; } bool AP_InertialSensor_Revo::_init() { _drdy_pin = hal.gpio->channel(INVENSENSE_DRDY_PIN); _drdy_pin->mode(INPUT_PULLDOWN); bool success = _hardware_init(); return success; } void AP_InertialSensor_Revo::_start(){ // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); // setup ODR and on-sensor filtering _set_filter_register(); // set sample rate to 1000Hz and apply a software filter // In this configuration, the gyro sample rate is 8kHz _register_write(MPUREG_SMPLRT_DIV, 0, true); hal.scheduler->delay_microseconds(10); // Gyro scale 2000ยบ/s _register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true); hal.scheduler->delay_microseconds(10); if (_mpu_type == Invensense_MPU6000 && ((product_id == MPU6000ES_REV_C4) || (product_id == MPU6000ES_REV_C5) || (product_id == MPU6000_REV_C4) || (product_id == MPU6000_REV_C5))) { // Accel scale 8g (4096 LSB/g) // Rev C has different scaling than rev D _register_write(MPUREG_ACCEL_CONFIG,1<<3, true); _accel_scale = GRAVITY_MSS / 4096.f; } else { // Accel scale 16g (2048 LSB/g) _register_write(MPUREG_ACCEL_CONFIG,3<<3, true); _accel_scale = GRAVITY_MSS / 2048.f; } hal.scheduler->delay_microseconds(10); if (_mpu_type == Invensense_ICM20608 || _mpu_type == Invensense_ICM20602) { // this avoids a sensor bug, see description above _register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); } // configure interrupt to fire when new data arrives _register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); hal.scheduler->delay_microseconds(10); // clear interrupt on any read, and hold the data ready pin high // until we clear the interrupt _register_write(MPUREG_INT_PIN_CFG, _register_read(MPUREG_INT_PIN_CFG) | BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); // now that we have initialised, we set the bus speed to high _dev->set_speed(AP_HAL::Device::SPEED_HIGH); } void AP_InertialSensor_Revo::start() { if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return; } // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); // only used for wake-up in accelerometer only low power mode _register_write(MPUREG_PWR_MGMT_2, 0x00); hal.scheduler->delay(1); // never use buggy FIFO // _fifo_reset(); // grab the used instances enum DevTypes gdev, adev; switch (_mpu_type) { case Invensense_MPU9250: gdev = DEVTYPE_GYR_MPU9250; adev = DEVTYPE_ACC_MPU9250; break; case Invensense_MPU6000: case Invensense_MPU6500: case Invensense_ICM20608: case Invensense_ICM20602: default: gdev = DEVTYPE_GYR_MPU6000; adev = DEVTYPE_ACC_MPU6000; break; } /* setup temperature sensitivity and offset. This varies considerably between parts */ switch (_mpu_type) { case Invensense_MPU9250: temp_zero = 21; temp_sensitivity = 1.0/340; break; case Invensense_MPU6000: case Invensense_MPU6500: temp_zero = 36.53; temp_sensitivity = 1.0/340; break; case Invensense_ICM20608: case Invensense_ICM20602: temp_zero = 25; temp_sensitivity = 1.0/326.8; break; } _gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(gdev)); _accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(adev)); // read and remember the product ID rev c has 1/2 the sensitivity of rev d product_id = _register_read(MPUREG_PRODUCT_ID); _start(); // start MPU _dev->get_semaphore()->give(); // setup sensor rotations from probe() set_gyro_orientation(_gyro_instance, _rotation); set_accel_orientation(_accel_instance, _rotation); // allocate fifo buffer _fifo_buffer = (uint8_t *)(hal.util->malloc_type((MPU_FIFO_BUFFER_LEN+1) * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE)); if (_fifo_buffer == nullptr) { AP_HAL::panic("Invensense: Unable to allocate FIFO buffer"); } GPIO::_attach_interrupt(INVENSENSE_DRDY_PIN, Scheduler::get_handler(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_isr, void)), RISING, MPU_INT_PRIORITY); _register_read(MPUREG_INT_STATUS); // reset interrupt request // some longer than MPU period task_handle = Scheduler::register_timer_task(1010, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_poll_data, void), NULL); // period just for case, task will be activated by request // REVOMINIScheduler::set_task_priority(task_handle, DRIVER_PRIORITY); // like other drivers } /* publish any pending data */ bool AP_InertialSensor_Revo::update() { update_accel(_accel_instance); update_gyro(_gyro_instance); _publish_temperature(_accel_instance, _temp_filtered); return true; } /* accumulate new samples */ void AP_InertialSensor_Revo::accumulate() { // nothing to do } /* * Return true if the Invensense has new data available for reading. * * We use the data ready pin if it is available. Otherwise, read the * status register. */ bool AP_InertialSensor_Revo::_data_ready() { return _drdy_pin->read() != 0; } /* ISR procedure for data read. Ring buffer don't needs to use semaphores for data access also we don't own a bus semaphore and can't guarantee that bus is free. But in Revo MPU uses personal SPI bus so it is ABSOLUTELY free :) */ void AP_InertialSensor_Revo::_isr(){ uint8_t *data = _fifo_buffer + MPU_SAMPLE_SIZE * write_ptr; // _fifo_buffer[write_ptr].time = REVOMINIScheduler::_micros64(); _dev->register_completion_callback(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_ioc, void)); // IO completion interrupt _block_read(MPUREG_ACCEL_XOUT_H, data, MPU_SAMPLE_SIZE); // start SPI transfer } void AP_InertialSensor_Revo::_ioc(){ // io completion ISR, data already in its place uint16_t new_wp = write_ptr+1; if(new_wp >= MPU_FIFO_BUFFER_LEN) { // move write pointer new_wp=0; // ring } if(new_wp == read_ptr) { // buffer overflow #ifdef MPU_DEBUG REVOMINIScheduler::MPU_buffer_overflow(); // count them // not overwrite, just skip last data #endif } else { write_ptr=new_wp; // move forward } //_dev->register_completion_callback(NULL); // we should release the bus semaphore if we use them // _dev->get_semaphore()->give(); // release if(Scheduler::get_current_task() != (void *)task_handle) { /* REVOMINIScheduler::set_task_active(task_handle); // resume task instead of using period. REVOMINIScheduler::context_switch_isr(); // and reschedule tasks after interrupt */ Scheduler::task_resume(task_handle); // resume task instead of using period. } } /* * Timer process to poll for new data from the Invensense. Called from timer's interrupt or from personal thread */ void AP_InertialSensor_Revo::_poll_data() { _read_fifo(); } bool AP_InertialSensor_Revo::_accumulate(uint8_t *samples, uint8_t n_samples) { bool ret=true; for (uint8_t i = 0; i < n_samples; i++) { const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; Vector3f accel, gyro; bool fsync_set = false; accel = Vector3f(int16_val(data, 1), int16_val(data, 0), -int16_val(data, 2)) * _accel_scale; int16_t t2 = int16_val(data, 3); /* if (!_check_raw_temp(t2)) { debug("temp reset %d %d i=%d", _raw_temp, t2, i); return false; // just skip this sample } */ float temp = t2 * temp_sensitivity + temp_zero; gyro = Vector3f(int16_val(data, 5), int16_val(data, 4), -int16_val(data, 6)) * GYRO_SCALE; _rotate_and_correct_accel(_accel_instance, accel); _rotate_and_correct_gyro(_gyro_instance, gyro); #if 0 // filter out samples if vector length changed by 100% This is cool for debug but drops samples in the case of even weak blows #define FILTER_KOEF 0.1 float len = accel.length(); if(is_zero(accel_len)) { accel_len=len; } else { float d = abs(accel_len-len)/(accel_len+len); if(d*100 > 50) { // difference more than 100% from mean value debug("accel len error: mean %f got %f", accel_len, len ); ret= false; //just report float k = FILTER_KOEF / (d*10); // 5 and more, so one bad sample never change mean more than 4% accel_len = accel_len * (1-k) + len*k; // complimentary filter 1/k on bad samples } else { accel_len = accel_len * (1-FILTER_KOEF) + len*FILTER_KOEF; // complimentary filter 1/10 on good samples } } #endif if(ret) { uint8_t kG = hal_param_helper->_correct_gyro; if(kG){ // compensate gyro drift by long-time mean float gyro_koef = 1.0 / (kG * 1000); // integrator time constant in seconds gyro_mean = gyro_mean * (1-gyro_koef) + gyro*gyro_koef; gyro -= gyro_mean; } _notify_new_accel_raw_sample(_accel_instance, accel, 0, fsync_set); _notify_new_gyro_raw_sample(_gyro_instance, gyro); _temp_filtered = _temp_filter.apply(temp); } } return ret; } /* when doing fast sampling the sensor gives us 8k samples/second. Every 2nd accel sample is a duplicate. To filter this we first apply a 1p low pass filter at 188Hz, then we average over 8 samples to bring the data rate down to 1kHz. This gives very good aliasing rejection at frequencies well above what can be handled with 1kHz sample rates. */ bool AP_InertialSensor_Revo::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples) { int32_t tsum = 0; const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale; bool clipped = false; bool ret = true; for (uint8_t i = 0; i < n_samples; i++) { const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; // use temperatue to detect FIFO corruption int16_t t2 = int16_val(data, 3); /* MPU don't likes such reads if (!_check_raw_temp(t2)) { debug("temp reset %d %d", _raw_temp, t2); // _fifo_reset(); ret = false; break; } */ tsum += t2; if ((_accum.count & 1) == 0) { // accel data is at 4kHz Vector3f a(int16_val(data, 1), int16_val(data, 0), -int16_val(data, 2)); if (fabsf(a.x) > clip_limit || fabsf(a.y) > clip_limit || fabsf(a.z) > clip_limit) { clipped = true; } _accum.accel += _accum.accel_filter.apply(a); } Vector3f g(int16_val(data, 5), int16_val(data, 4), -int16_val(data, 6)); _accum.gyro += _accum.gyro_filter.apply(g); _accum.count++; if (_accum.count == MPU_FIFO_DOWNSAMPLE_COUNT) { float ascale = _accel_scale / (MPU_FIFO_DOWNSAMPLE_COUNT/2); _accum.accel *= ascale; float gscale = GYRO_SCALE / MPU_FIFO_DOWNSAMPLE_COUNT; _accum.gyro *= gscale; _rotate_and_correct_accel(_accel_instance, _accum.accel); _rotate_and_correct_gyro(_gyro_instance, _accum.gyro); _notify_new_accel_raw_sample(_accel_instance, _accum.accel, 0, false); _notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro); _accum.accel.zero(); _accum.gyro.zero(); _accum.count = 0; } } if (clipped) { increment_clip_count(_accel_instance); } if (ret) { float temp = (static_cast(tsum)/n_samples)*temp_sensitivity + temp_zero; _temp_filtered = _temp_filter.apply(temp); } return ret; } #define MAX_NODATA_TIME 5000 // 5ms void AP_InertialSensor_Revo::_read_fifo() { uint32_t now=Scheduler::_micros(); #ifdef MPU_DEBUG_LOG uint16_t old_log_ptr=mpu_log_ptr; mpu_log_item & p = mpu_log[mpu_log_ptr++]; if(mpu_log_ptr>=MPU_LOG_SIZE) mpu_log_ptr=0; p.t=now; p.read_ptr=read_ptr; p.write_ptr=write_ptr; #endif if(read_ptr == write_ptr) { if(_data_ready()){ // no interrupt for some reason? _isr(); } if(now - last_sample > MAX_NODATA_TIME) { // something went wrong - data stream stopped _start(); // try to restart MPU last_sample=now; #ifdef MPU_DEBUG REVOMINIScheduler::MPU_restarted(); // count them #endif } return; } last_sample=now; uint16_t count = 0; #ifdef MPU_DEBUG uint32_t dt = 0; uint32_t t = now; #endif while(read_ptr != write_ptr) { // there are samples // uint64_t time = _fifo_buffer[read_ptr++].time; // we can get exact time uint8_t *rx = _fifo_buffer + MPU_SAMPLE_SIZE * read_ptr++; // calculate address and move to next item if(read_ptr >= MPU_FIFO_BUFFER_LEN) { // move write pointer read_ptr=0; // ring } if (_fast_sampling) { if (!_accumulate_fast_sampling(rx, 1)) { // debug("stop at %u of %u", n_samples, bytes_read/MPU_SAMPLE_SIZE); // break; don't break before all items in queue will be readed continue; } } else { if (!_accumulate(rx, 1)) { // break; don't break before all items in queue will be readed continue; } } count++; } now = Scheduler::_micros(); last_sample=now; #ifdef MPU_DEBUG_LOG if(count==1) { mpu_log_ptr = old_log_ptr; } #endif #ifdef MPU_DEBUG dt= now - t;// time from entry REVOMINIScheduler::MPU_stats(count,dt); #endif // only wait_for_sample() uses delay_microseconds_boost() so // resume main thread then it waits for this sample - sample already got Scheduler::resume_boost(); } /* fetch temperature in order to detect FIFO sync errors */ bool AP_InertialSensor_Revo::_check_raw_temp(int16_t t2) { if (abs(t2 - _raw_temp) < 400) { // cached copy OK return true; } uint8_t trx[2]; if (_block_read(MPUREG_TEMP_OUT_H, trx, 2)) { _raw_temp = int16_val(trx, 0); } return (abs(t2 - _raw_temp) < 400); } bool AP_InertialSensor_Revo::_block_read(uint8_t reg, uint8_t *buf, uint32_t size) { return _dev->read_registers(reg, buf, size); } uint8_t AP_InertialSensor_Revo::_register_read(uint8_t reg) { uint8_t val = 0; _dev->read_registers(reg, &val, 1); return val; } void AP_InertialSensor_Revo::_register_write(uint8_t reg, uint8_t val, bool checked) { _dev->write_register(reg, val, checked); } /* set the DLPF filter frequency. Assumes caller has taken semaphore */ void AP_InertialSensor_Revo::_set_filter_register(void) { uint8_t config; #if INVENSENSE_EXT_SYNC_ENABLE // add in EXT_SYNC bit if enabled config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT); #else config = 0; #endif if (enable_fast_sampling(_accel_instance)) { _fast_sampling = (_mpu_type != Invensense_MPU6000 && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI); if (_fast_sampling) { #ifdef DEBUG_BUILD printf("MPU[%u]: enabled fast sampling\n", _accel_instance); #endif // for logging purposes set the oversamping rate _set_accel_oversampling(_accel_instance, MPU_FIFO_DOWNSAMPLE_COUNT/2); _set_gyro_oversampling(_gyro_instance, MPU_FIFO_DOWNSAMPLE_COUNT); /* set divider for internal sample rate to 0x1F when fast sampling enabled. This reduces the impact of the slave sensor on the sample rate. It ends up with around 75Hz slave rate, and reduces the impact on the gyro and accel sample rate, ending up with around 7760Hz gyro rate and 3880Hz accel rate */ _register_write(MPUREG_I2C_SLV4_CTRL, 0x1F); } } if (_fast_sampling) { // this gives us 8kHz sampling on gyros and 4kHz on accels config |= BITS_DLPF_CFG_256HZ_NOLPF2; } else { // limit to 1kHz if not on SPI config |= BITS_DLPF_CFG_188HZ; } config |= MPUREG_CONFIG_FIFO_MODE_STOP; _register_write(MPUREG_CONFIG, config, true); if (_mpu_type != Invensense_MPU6000) { if (_fast_sampling) { // setup for 4kHz accels _register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true); } else { _register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ, true); } } } /* check whoami for sensor type */ bool AP_InertialSensor_Revo::_check_whoami(void) { uint8_t whoami = _register_read(MPUREG_WHOAMI); switch (whoami) { case MPU_WHOAMI_6000: _mpu_type = Invensense_MPU6000; return true; case MPU_WHOAMI_6500: _mpu_type = Invensense_MPU6500; return true; case MPU_WHOAMI_MPU9250: case MPU_WHOAMI_MPU9255: _mpu_type = Invensense_MPU9250; return true; case MPU_WHOAMI_20608: _mpu_type = Invensense_ICM20608; return true; case MPU_WHOAMI_20602: _mpu_type = Invensense_ICM20602; return true; } // not a value WHOAMI result return false; } bool AP_InertialSensor_Revo::_hardware_init(void) { if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return false; } // setup for register checking _dev->setup_checked_registers(7, 20); // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); if (!_check_whoami()) { _dev->get_semaphore()->give(); return false; } // Chip reset uint8_t tries; for (tries = 0; tries < 5; tries++) { _last_stat_user_ctrl = _register_read(MPUREG_USER_CTRL); /* First disable the master I2C to avoid hanging the slaves on the * aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus * is used */ if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { _last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN; _register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); hal.scheduler->delay(10); } /* reset device */ _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); /* bus-dependent initialization */ if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { /* Disable I2C bus if SPI selected (Recommended in Datasheet to be * done just after the device is reset) */ _last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS; _register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); } /* bus-dependent initialization */ if ((_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) && (_mpu_type == Invensense_MPU9250)) { /* Enable I2C bypass to access internal AK8963 */ _register_write(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN); } // Wake up device and select GyroZ clock. Note that the // Invensense starts up in sleep mode, and it can take some time // for it to come out of sleep _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(5); // check it has woken up if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { break; } hal.scheduler->delay(10); if (_data_ready()) { break; } } _dev->set_speed(AP_HAL::Device::SPEED_HIGH); _dev->get_semaphore()->give(); if (tries == 5) { #ifdef DEBUG_BUILD printf("Failed to boot Invensense 5 times\n"); #endif return false; } if (_mpu_type == Invensense_ICM20608 || _mpu_type == Invensense_ICM20602) { // this avoids a sensor bug, see description above _register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); } return true; } #endif // BOARD_REVO