/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Flymaple IMU driver by Mike McCauley */ // Interface to the Flymaple sensors: // ITG3205 Gyroscope http://www.sparkfun.com/datasheets/Sensors/Gyro/PS-ITG-3200-00-01.4.pdf // ADXL345 Accelerometer http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf #include #if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE #include "AP_InertialSensor_Flymaple.h" const extern AP_HAL::HAL& hal; // This is how often we wish to make raw samples of the sensors in Hz const uint32_t raw_sample_rate_hz = 800; // And the equivalent time between samples in microseconds const uint32_t raw_sample_interval_us = (1000000 / raw_sample_rate_hz); /////// /// Accelerometer ADXL345 register definitions #define FLYMAPLE_ACCELEROMETER_ADDRESS 0x53 #define FLYMAPLE_ACCELEROMETER_XL345_DEVID 0xe5 #define FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE 0x2c #define FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID 0x00 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0 0x32 #define FLYMAPLE_ACCELEROMETER_GRAVITY 248 // ADXL345 accelerometer scaling // Result will be scaled to 1m/s/s // ADXL345 in Full resolution mode (any g scaling) is 256 counts/g, so scale by 9.81/256 = 0.038320312 #define FLYMAPLE_ACCELEROMETER_SCALE_M_S (GRAVITY_MSS / 256.0f) /// Gyro ITG3205 register definitions #define FLYMAPLE_GYRO_ADDRESS 0x68 #define FLYMAPLE_GYRO_WHO_AM_I 0x00 #define FLYMAPLE_GYRO_PWR_MGM 0x3e #define FLYMAPLE_GYRO_DLPF_FS 0x16 #define FLYMAPLE_GYRO_INT_CFG 0x17 #define FLYMAPLE_GYRO_SMPLRT_DIV 0x15 #define FLYMAPLE_GYRO_GYROX_H 0x1d // ITG3200 Gyroscope scaling // ITG3200 is 14.375 LSB degrees/sec with FS_SEL=3 // Result wil be radians/sec #define FLYMAPLE_GYRO_SCALE_R_S (1.0f / 14.375f) * (3.1415926f / 180.0f) AP_InertialSensor_Flymaple::AP_InertialSensor_Flymaple(AP_InertialSensor &imu) : AP_InertialSensor_Backend(imu), _have_gyro_sample(false), _have_accel_sample(false), _accel_filter(raw_sample_rate_hz, 10), _gyro_filter(raw_sample_rate_hz, 10), _last_gyro_timestamp(0), _last_accel_timestamp(0) {} /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_Flymaple::detect(AP_InertialSensor &_imu) { AP_InertialSensor_Flymaple *sensor = new AP_InertialSensor_Flymaple(_imu); if (sensor == NULL) { return NULL; } if (!sensor->_init_sensor()) { delete sensor; return NULL; } return sensor; } bool AP_InertialSensor_Flymaple::_init_sensor(void) { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) return false; // Init the accelerometer uint8_t data; hal.i2c->readRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID, &data); if (data != FLYMAPLE_ACCELEROMETER_XL345_DEVID) hal.scheduler->panic("AP_InertialSensor_Flymaple: could not find ADXL345 accelerometer sensor"); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); hal.scheduler->delay(5); // Measure mode: hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); hal.scheduler->delay(5); // Full resolution, 8g: // Caution, this must agree with FLYMAPLE_ACCELEROMETER_SCALE_1G // In full resoution mode, the scale factor need not change hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); hal.scheduler->delay(5); // Normal power, 800Hz Output Data Rate, 400Hz bandwidth: hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE, 0x0d); hal.scheduler->delay(5); // Power up default is FIFO bypass mode. FIFO is not used by the chip // Init the Gyro // Expect to read the same as the Gyro I2C adress: hal.i2c->readRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_WHO_AM_I, &data); if (data != FLYMAPLE_GYRO_ADDRESS) hal.scheduler->panic("AP_InertialSensor_Flymaple: could not find ITG-3200 accelerometer sensor"); hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_PWR_MGM, 0x00); hal.scheduler->delay(1); // Sample rate divider: with 8kHz internal clock (see FLYMAPLE_GYRO_DLPF_FS), // get 500Hz sample rate, 2 samples hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_SMPLRT_DIV, 0x0f); hal.scheduler->delay(1); // 2000 degrees/sec, 256Hz LPF, 8kHz internal sample rate // This is the least amount of filtering we can configure for this device hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_DLPF_FS, 0x18); hal.scheduler->delay(1); // No interrupts hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_INT_CFG, 0x00); hal.scheduler->delay(1); // Set up the filter desired _set_filter_frequency(_accel_filter_cutoff()); // give back i2c semaphore i2c_sem->give(); _gyro_instance = _imu.register_gyro(raw_sample_rate_hz); _accel_instance = _imu.register_accel(raw_sample_rate_hz); _product_id = AP_PRODUCT_ID_FLYMAPLE; return true; } /* set the filter frequency */ void AP_InertialSensor_Flymaple::_set_filter_frequency(uint8_t filter_hz) { _accel_filter.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _gyro_filter.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); } // This takes about 20us to run bool AP_InertialSensor_Flymaple::update(void) { _have_gyro_sample = false; _have_accel_sample = false; update_accel(_accel_instance); update_gyro(_gyro_instance); return true; } // This needs to get called as often as possible. // Its job is to accumulate samples as fast as is reasonable for the accel and gyro // sensors. // Note that this is called from gyro_sample_available() and // accel_sample_available(), which is really not good enough for // 800Hz, as it is common for the main loop to take more than 1.5ms // before wait_for_sample() is called again. We can't just call this // from a timer as timers run with interrupts disabled, and the I2C // operations take too long // So we are stuck with a suboptimal solution. The results are not so // good in terms of timing. It may be better with the FIFOs enabled void AP_InertialSensor_Flymaple::_accumulate(void) { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) return; // Read accelerometer // ADXL345 is in the default FIFO bypass mode, so the FIFO is not used uint8_t buffer[6]; uint32_t now = hal.scheduler->micros(); // This takes about 250us at 400kHz I2C speed if ((now - _last_accel_timestamp) >= raw_sample_interval_us && hal.i2c->readRegisters(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0, 6, buffer) == 0) { // The order is a bit wierd here since the standard we have adopted for Flymaple // sensor orientation is different to what the board designers intended // Caution, to support alternative chip orientations on other bords, may // need to add a chip orientation rotate int16_t y = -((((int16_t)buffer[1]) << 8) | buffer[0]); // chip X axis int16_t x = -((((int16_t)buffer[3]) << 8) | buffer[2]); // chip Y axis int16_t z = -((((int16_t)buffer[5]) << 8) | buffer[4]); // chip Z axis Vector3f accel = Vector3f(x,y,z); // Adjust for chip scaling to get m/s/s accel *= FLYMAPLE_ACCELEROMETER_SCALE_M_S; _rotate_and_correct_accel(_accel_instance, accel); _notify_new_accel_raw_sample(_accel_instance, accel); _have_accel_sample = true; _last_accel_timestamp = now; } // Read gyro now = hal.scheduler->micros(); // This takes about 250us at 400kHz I2C speed if ((now - _last_gyro_timestamp) >= raw_sample_interval_us && hal.i2c->readRegisters(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_GYROX_H, 6, buffer) == 0) { // See above re order of samples in buffer int16_t y = -((((int16_t)buffer[0]) << 8) | buffer[1]); // chip X axis int16_t x = -((((int16_t)buffer[2]) << 8) | buffer[3]); // chip Y axis int16_t z = -((((int16_t)buffer[4]) << 8) | buffer[5]); // chip Z axis Vector3f gyro = Vector3f(x,y,z); // Adjust for chip scaling to get radians/sec gyro *= FLYMAPLE_GYRO_SCALE_R_S; _rotate_and_correct_gyro(_gyro_instance, gyro); _notify_new_gyro_raw_sample(_gyro_instance, gyro); _have_gyro_sample = true; _last_gyro_timestamp = now; } // give back i2c semaphore i2c_sem->give(); } #endif // CONFIG_HAL_BOARD