#pragma once #include class AP_Terrain; #define LOCATION_ALT_MAX_M 83000 // maximum altitude (in meters) that can be fit into Location structure's alt field class Location { public: uint8_t relative_alt : 1; // 1 if altitude is relative to home uint8_t loiter_ccw : 1; // 0 if clockwise, 1 if counter clockwise uint8_t terrain_alt : 1; // this altitude is above terrain uint8_t origin_alt : 1; // this altitude is above ekf origin uint8_t loiter_xtrack : 1; // 0 to crosstrack from center of waypoint, 1 to crosstrack from tangent exit location // note that mission storage only stores 24 bits of altitude (~ +/- 83km) int32_t alt; int32_t lat; int32_t lng; /// enumeration of possible altitude types enum class AltFrame { ABSOLUTE = 0, ABOVE_HOME = 1, ABOVE_ORIGIN = 2, ABOVE_TERRAIN = 3 }; /// constructors Location(); Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame); Location(const Vector3f &ekf_offset_neu, AltFrame frame); static void set_terrain(AP_Terrain* terrain) { _terrain = terrain; } // set altitude void set_alt_cm(int32_t alt_cm, AltFrame frame); // get altitude (in cm) in the desired frame // returns false on failure to get altitude in the desired frame which // can only happen if the original frame or desired frame is above-terrain bool get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const WARN_IF_UNUSED; // get altitude frame AltFrame get_alt_frame() const; // converts altitude to new frame // returns false on failure to convert which can only happen if // the original frame or desired frame is above-terrain bool change_alt_frame(AltFrame desired_frame); // get position as a vector from origin (x,y only or x,y,z) // return false on failure to get the vector which can only // happen if the EKF origin has not been set yet // x, y and z are in centimetres bool get_vector_xy_from_origin_NE(Vector2f &vec_ne) const WARN_IF_UNUSED; bool get_vector_from_origin_NEU(Vector3f &vec_neu) const WARN_IF_UNUSED; // return distance in meters between two locations float get_distance(const struct Location &loc2) const; // return the distance in meters in North/East/Down plane as a N/E/D vector to loc2 Vector3f get_distance_NED(const Location &loc2) const; Vector3d get_distance_NED_double(const Location &loc2) const; // return the distance in meters in North/East plane as a N/E vector to loc2 Vector2f get_distance_NE(const Location &loc2) const; // extrapolate latitude/longitude given distances (in meters) north and east void offset(float ofs_north, float ofs_east); void offset_double(double ofs_north, double ofs_east); // extrapolate latitude/longitude given bearing and distance void offset_bearing(float bearing_deg, float distance); // extrapolate latitude/longitude given bearing, pitch and distance void offset_bearing_and_pitch(float bearing_deg, float pitch_deg, float distance); // longitude_scale - returns the scaler to compensate for // shrinking longitude as you move north or south from the equator // Note: this does not include the scaling to convert // longitude/latitude points to meters or centimeters float longitude_scale() const; bool is_zero(void) const WARN_IF_UNUSED; void zero(void); // return bearing in centi-degrees from location to loc2 int32_t get_bearing_to(const struct Location &loc2) const; // return the bearing in radians float get_bearing(const struct Location &loc2) const { return radians(get_bearing_to(loc2) * 0.01f); } ; // check if lat and lng match. Ignore altitude and options bool same_latlon_as(const Location &loc2) const; /* * convert invalid waypoint with useful data. return true if location changed */ bool sanitize(const struct Location &defaultLoc); // return true when lat and lng are within range bool check_latlng() const; // see if location is past a line perpendicular to // the line between point1 and point2 and passing through point2. // If point1 is our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool past_interval_finish_line(const Location &point1, const Location &point2) const; /* return the proportion we are along the path from point1 to point2, along a line parallel to point1<->point2. This will be more than 1 if we have passed point2 */ float line_path_proportion(const Location &point1, const Location &point2) const; bool initialised() const { return (lat !=0 || lng != 0 || alt != 0); } // wrap longitude at -180e7 to 180e7 static int32_t wrap_longitude(int32_t lon); // get lon1-lon2, wrapping at -180e7 to 180e7 static int32_t diff_longitude(int32_t lon1, int32_t lon2); private: static AP_Terrain *_terrain; // scaling factor from 1e-7 degrees to meters at equator // == 1.0e-7 * DEG_TO_RAD * RADIUS_OF_EARTH static constexpr float LOCATION_SCALING_FACTOR = 0.011131884502145034f; // inverse of LOCATION_SCALING_FACTOR static constexpr float LOCATION_SCALING_FACTOR_INV = 89.83204953368922f; };