// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Sub.h" // Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- void Sub::default_dead_zones() { channel_roll->set_default_dead_zone(30); channel_pitch->set_default_dead_zone(30); #if FRAME_CONFIG == HELI_FRAME channel_throttle->set_default_dead_zone(10); channel_yaw->set_default_dead_zone(15); g.rc_8.set_default_dead_zone(10); #else channel_throttle->set_default_dead_zone(30); channel_yaw->set_default_dead_zone(40); #endif g.rc_6.set_default_dead_zone(0); } void Sub::init_rc_in() { channel_roll = RC_Channel::rc_channel(rcmap.roll()-1); channel_pitch = RC_Channel::rc_channel(rcmap.pitch()-1); channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); channel_yaw = RC_Channel::rc_channel(rcmap.yaw()-1); <<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9 channel_forward = RC_Channel::rc_channel(rcmap.forward()-1); channel_strafe = RC_Channel::rc_channel(rcmap.strafe()-1); ======= >>>>>>> Changed to ArduCopter as the base code. // set rc channel ranges channel_roll->set_angle(ROLL_PITCH_INPUT_MAX); channel_pitch->set_angle(ROLL_PITCH_INPUT_MAX); channel_yaw->set_angle(4500); channel_throttle->set_range(g.throttle_min, THR_MAX); <<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9 channel_forward->set_angle(4500); channel_strafe->set_angle(4500); ======= >>>>>>> Changed to ArduCopter as the base code. channel_roll->set_type(RC_CHANNEL_TYPE_ANGLE_RAW); channel_pitch->set_type(RC_CHANNEL_TYPE_ANGLE_RAW); channel_yaw->set_type(RC_CHANNEL_TYPE_ANGLE_RAW); <<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9 channel_forward->set_type(RC_CHANNEL_TYPE_ANGLE_RAW); channel_strafe->set_type(RC_CHANNEL_TYPE_ANGLE_RAW); ======= >>>>>>> Changed to ArduCopter as the base code. //set auxiliary servo ranges g.rc_5.set_range(0,1000); g.rc_6.set_range(0,1000); g.rc_7.set_range(0,1000); g.rc_8.set_range(0,1000); // set default dead zones default_dead_zones(); // initialise throttle_zero flag ap.throttle_zero = true; } // init_rc_out -- initialise motors and check if pilot wants to perform ESC calibration void Sub::init_rc_out() { motors.set_update_rate(g.rc_speed); motors.set_frame_orientation(g.frame_orientation); motors.Init(); // motor initialisation #if FRAME_CONFIG != HELI_FRAME motors.set_throttle_range(g.throttle_min, channel_throttle->radio_min, channel_throttle->radio_max); motors.set_hover_throttle(g.throttle_mid); #endif for(uint8_t i = 0; i < 5; i++) { delay(20); read_radio(); } // we want the input to be scaled correctly channel_throttle->set_range_out(0,1000); // check if we should enter esc calibration mode esc_calibration_startup_check(); // enable output to motors pre_arm_rc_checks(); if (ap.pre_arm_rc_check) { enable_motor_output(); } // refresh auxiliary channel to function map RC_Channel_aux::update_aux_servo_function(); // setup correct scaling for ESCs like the UAVCAN PX4ESC which // take a proportion of speed. hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max); } // enable_motor_output() - enable and output lowest possible value to motors void Sub::enable_motor_output() { // enable motors motors.enable(); motors.output_min(); } void Sub::read_radio() { static uint32_t last_update_ms = 0; uint32_t tnow_ms = millis(); if (hal.rcin->new_input()) { last_update_ms = tnow_ms; ap.new_radio_frame = true; RC_Channel::set_pwm_all(); set_throttle_and_failsafe(channel_throttle->radio_in); set_throttle_zero_flag(channel_throttle->control_in); // flag we must have an rc receiver attached if (!failsafe.rc_override_active) { ap.rc_receiver_present = true; } // update output on any aux channels, for manual passthru RC_Channel_aux::output_ch_all(); }else{ uint32_t elapsed = tnow_ms - last_update_ms; // turn on throttle failsafe if no update from the RC Radio for 500ms or 2000ms if we are using RC_OVERRIDE if (((!failsafe.rc_override_active && (elapsed >= FS_RADIO_TIMEOUT_MS)) || (failsafe.rc_override_active && (elapsed >= FS_RADIO_RC_OVERRIDE_TIMEOUT_MS))) && (g.failsafe_throttle && (ap.rc_receiver_present||motors.armed()) && !failsafe.radio)) { Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME); set_failsafe_radio(true); } } } void Sub::transform_manual_control_to_rc_override(int16_t x, int16_t y, int16_t z, int16_t r, uint16_t buttons) { int16_t channels[10]; uint32_t tnow_ms = millis(); float rpyScale = 0.5; float throttleScale = 0.8; int16_t rpyCenter = 1500; int16_t throttleBase = 1500-500*throttleScale; static int16_t rollTrim = 0; static int16_t mode; static int16_t camTilt = 1500; static int16_t lights = 1100; static uint32_t lastLights; static bool lightsBrighter = true; // Button logic to arm/disarm motors (Start and back buttons) if ( buttons & (1 << 4) ) { init_arm_motors(true); } else if ( buttons & (1 << 5) ) { init_disarm_motors(); } // Button logic to change camera tilt (D-pad up and down + left joystick click to center) if ( buttons & (1 << 0) ) { camTilt = constrain_float(camTilt+20,800,2200); } else if ( buttons & (1 << 1) ) { camTilt = constrain_float(camTilt-20,800,2200); } else if ( buttons & (1 << 6) ) { camTilt = 1500; // Reset camera tilt } // Button logic for roll trim (D-pad left and right) if ( (buttons & ( 1 << 2 )) && rollTrim > -200 ) { rollTrim -= 10; } else if ( (buttons & ( 1 << 3 )) && rollTrim < 200 ) { rollTrim += 10; } // Button logic for mode changes (B for stabilize, Y for altitude hold) if ( buttons & (1 << 14) ) { mode = 2000; } else if ( buttons & (1 << 12)) { mode = 1000; } // Button logic for lights with cyclical dimming (right joystick click) if ( (buttons & (1 << 7)) && (tnow_ms - lastLights > 100) ) { lastLights = tnow_ms; if ( lightsBrighter ) { lights += 200; } else { lights -= 200; } if ( lights >= 1900 ) { lightsBrighter = false; } else if ( lights <= 1100 ) { lightsBrighter = true; } } channels[0] = 1500; // pitch channels[1] = 1500 + rollTrim; // roll channels[2] = z*throttleScale+throttleBase; // throttle channels[3] = r*rpyScale+rpyCenter; // yaw channels[4] = mode; // for testing only channels[5] = x*rpyScale+rpyCenter; // forward for ROV channels[6] = y*rpyScale+rpyCenter; // strafe for ROV channels[7] = camTilt; // camera tilt channels[8] = lights; channels[9] = 0; // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation failsafe.rc_override_active = hal.rcin->set_overrides(channels, 10); } #define FS_COUNTER 3 // radio failsafe kicks in after 3 consecutive throttle values below failsafe_throttle_value void Sub::set_throttle_and_failsafe(uint16_t throttle_pwm) { // if failsafe not enabled pass through throttle and exit if(g.failsafe_throttle == FS_THR_DISABLED) { channel_throttle->set_pwm(throttle_pwm); return; } //check for low throttle value if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) { // if we are already in failsafe or motors not armed pass through throttle and exit if (failsafe.radio || !(ap.rc_receiver_present || motors.armed())) { channel_throttle->set_pwm(throttle_pwm); return; } // check for 3 low throttle values // Note: we do not pass through the low throttle until 3 low throttle values are recieved failsafe.radio_counter++; if( failsafe.radio_counter >= FS_COUNTER ) { failsafe.radio_counter = FS_COUNTER; // check to ensure we don't overflow the counter set_failsafe_radio(true); channel_throttle->set_pwm(throttle_pwm); // pass through failsafe throttle } }else{ // we have a good throttle so reduce failsafe counter failsafe.radio_counter--; if( failsafe.radio_counter <= 0 ) { failsafe.radio_counter = 0; // check to ensure we don't underflow the counter // disengage failsafe after three (nearly) consecutive valid throttle values if (failsafe.radio) { set_failsafe_radio(false); } } // pass through throttle channel_throttle->set_pwm(throttle_pwm); } } #define THROTTLE_ZERO_DEBOUNCE_TIME_MS 400 // set_throttle_zero_flag - set throttle_zero flag from debounced throttle control // throttle_zero is used to determine if the pilot intends to shut down the motors // Basically, this signals when we are not flying. We are either on the ground // or the pilot has shut down the copter in the air and it is free-falling void Sub::set_throttle_zero_flag(int16_t throttle_control) { static uint32_t last_nonzero_throttle_ms = 0; uint32_t tnow_ms = millis(); // if not using throttle interlock and non-zero throttle and not E-stopped, // or using motor interlock and it's enabled, then motors are running, // and we are flying. Immediately set as non-zero if ((!ap.using_interlock && (throttle_control < 475 || throttle_control > 525) && !ap.motor_emergency_stop) || (ap.using_interlock && motors.get_interlock())) { last_nonzero_throttle_ms = tnow_ms; ap.throttle_zero = false; } else if (tnow_ms - last_nonzero_throttle_ms > THROTTLE_ZERO_DEBOUNCE_TIME_MS) { ap.throttle_zero = true; } }