/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* 24 state EKF based on https://github.com/priseborough/InertialNav Converted from Matlab to C++ by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef AP_NavEKF #define AP_NavEKF #endif #include #include #include #include #include #include #include class NavEKF { public: // Constructor // Don't know how to do this !! NavEKF(AP_AHRS* ahrs, AP_Baro* baro, GPS* gps) : _ahrs(ahrs), _baro(baro), _gps(gps) // Initialise the filter states from the AHRS and magnetometer data (if present) void InitialiseFilter(); // Update Filter States - this should be called whenever new IMU data is available void UpdateFilter(); // return the Lat (rad), long(rad) and height (m) of the reference point void getRefLLH(); // return the last calculated NED position relative to the reference point (m) void getPosNED(); // return the last calculated NED velocity (m/s) void getVelNED(); // return the last calculated Lat (rad), long(rad) and height (m) void getLLH(); // return the Euler roll, pitch and yaw angle in radians void getEulAng(); // get the transformation matrix from NED to XYD (body) axes void getTnb(); // get the transformation matrix from XYZ (body) to NED axes void getTbn(); // get the quaternions defining the rotation from NED to XYZ (body) axes void getQuat(); private: void UpdateStrapdownEquationsNED(); void CovariancePrediction(); void FuseVelPosNED(); void FuseMagnetometer(); void FuseAirspeed(); void zeroRows(float covMat[24][24], uint8_t first, uint8_t last); void zeroCols(float covMat[24][24], uint8_t first, uint8_t last); void quatNorm(float quatOut[4], float quatIn[4]); // store states along with system time stamp in msces void StoreStates(uint32_t msec); // recall state vector stored at closest time to the one specified by msec void RecallStates(float statesForFusion[24], uint32_t msec); void quat2Tnb(Matrix3f &Tnb, float quat[4]); void quat2Tbn(Matrix3f &Tbn, float quat[4]); void calcEarthRateNED(Vector3f &omega, float latitude); void eul2quat(float quat[4], float eul[3]); void quat2eul(float eul[3],float quat[4]); void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD); void calcposNE(float posNE[2], float lat, float lon, float latRef, float lonRef); void calcllh(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef); void OnGroundCheck(); void CovarianceInit(); void readIMUData(); void readGpsData(); void readHgtData(); void readMagData(); void readAirSpdData(); void SelectVelPosFusion(); void SelectHgtFusion(); void SelectTasFusion(); void SelectMagFusion(); #define deg2rad 0.017453292 #define rad2deg 57.295780 #define pi 3.141592657 #define earthRate 0.000072921 #define earthRadius 6378145.0 static float KH[24][24]; // intermediate result used for covariance updates static float KHP[24][24]; // intermediate result used for covariance updates static float P[24][24]; // covariance matrix static float Kfusion[24]; // Kalman gains static float states[24]; // state matrix static float storedStates[24][50]; // state vectors stored for the last 50 time steps static uint32_t statetimeStamp[50]; // time stamp for each state vector stored static Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad) static Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s) static Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad) static Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s) static float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2) static Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) static Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s) static Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad) static float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec) static float dt; // time lapsed since last covariance prediction static bool onGround; // boolean true when the flight vehicle is on the ground (not flying) const bool useAirspeed = true; // boolean true if airspeed data is being used const bool useCompass = true; // boolean true if magnetometer data is being used const uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity static float innovVelPos[6]; // innovation output static float varInnovVelPos[6]; // innovation variance output static bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused static bool fusePosData; // this boolean causes the posNE and velNED obs to be fused static bool fuseHgtData; // this boolean causes the hgtMea obs to be fused static float velNED[3]; // North, East, Down velocity obs (m/s) static float posNE[2]; // North, East position obs (m) static float hgtMea; // measured height (m) static float posNED[3]; // North, East Down position (m) static float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements static float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements static float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement static float innovMag[3]; // innovation output static float varInnovMag[3]; // innovation variance output static bool fuseMagData; // boolean true when magnetometer data is to be fused static Vector3f magData; // magnetometer flux radings in X,Y,Z body axes static float statesAtMagMeasTime[24]; // filter satates at the effective measurement time static float innovVtas; // innovation output static float varInnovVtas; // innovation variance output static bool fuseVtasData; // boolean true when airspeed data is to be fused static float VtasMeas; // true airspeed measurement (m/s) static float statesAtVtasMeasTime[24]; // filter states at the effective measurement time static float latRef; // WGS-84 latitude of reference point (rad) static float lonRef; // WGS-84 longitude of reference point (rad) static float hgtRef; // WGS-84 height of reference point (m) static Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes static float eulerEst[3]; // Euler angles calculated from filter states static float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution const float covTimeStepMax = 0.07; // maximum time allowed between covariance predictions const float covDelAngMax = 0.05; // maximum delta angle between covariance predictions static bool covPredStep; // boolean set to true when a covariance prediction step has been performed static bool magFuseStep; // boolean set to true when magnetometer fusion steps are being performed static bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed static bool tasFuseStep; // boolean set to true when airspeed fusion is being performed static uint32_t TASmsecPrev; // time stamp of last TAS fusion step const uint32_t TASmsecTgt = 250; // target interval between TAS fusion steps static uint32_t MAGmsecPrev; // time stamp of last compass fusion step const uint32_t MAGmsecTgt = 200; // target interval between compass fusion steps static uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step const uint32_t HGTmsecTgt = 200; // target interval between height measurement fusion steps // Estimated time delays (msec) const uint32_t msecVelDelay = 200; const uint32_t msecPosDelay = 200; const uint32_t msecHgtDelay = 350; const uint32_t msecMagDelay = 30; const uint32_t msecTasDelay = 200; // IMU input data variables static float imuIn; static float tempImu[8]; static uint32_t IMUmsec; // GPS input data variables static float gpsCourse; static float gpsGndSpd; static float gpsVelD; static float gpsLat; static float gpsLon; static float gpsHgt; static bool newDataGps; static uint8_t GPSstatus; // Magnetometer input data variables static float magIn; static float tempMag[8]; static float tempMagPrev[8]; static uint32_t MAGframe; static uint32_t MAGtime; static uint32_t lastMAGtime; static bool newDataMag; // AHRS input data variables static float ahrsEul[3]; };