/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include "AP_BattMonitor.h" class AP_BattMonitor_Backend { public: // constructor. This incorporates initialisation as well. AP_BattMonitor_Backend(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, AP_BattMonitor_Params ¶ms); // we declare a virtual destructor so that BattMonitor driver can // override with a custom destructor if need be virtual ~AP_BattMonitor_Backend(void) {} // initialise virtual void init() {}; // read the latest battery voltage virtual void read() = 0; /// returns true if battery monitor instance provides time remaining info virtual bool has_time_remaining() const { return false; } /// returns true if battery monitor instance provides consumed energy info virtual bool has_consumed_energy() const { return false; } /// returns true if battery monitor instance provides current info virtual bool has_current() const = 0; // returns true if battery monitor provides individual cell voltages virtual bool has_cell_voltages() const { return false; } // returns true if battery monitor provides temperature virtual bool has_temperature() const { return false; } // returns true if temperature retrieved successfully virtual bool get_temperature(float &temperature) const; // capacity_remaining_pct - returns true if the battery % is available and writes to the percentage argument // returns false if the battery is unhealthy, does not have current monitoring, or the pack_capacity is too small virtual bool capacity_remaining_pct(uint8_t &percentage) const WARN_IF_UNUSED; // return true if cycle count can be provided and fills in cycles argument virtual bool get_cycle_count(uint16_t &cycles) const { return false; } /// get voltage with sag removed (based on battery current draw and resistance) /// this will always be greater than or equal to the raw voltage float voltage_resting_estimate() const; // update battery resistance estimate and voltage_resting_estimate virtual void update_resistance_estimate(); // updates failsafe timers, and returns what failsafes are active virtual AP_BattMonitor::Failsafe update_failsafes(void); // returns false if we fail arming checks, in which case the buffer will be populated with a failure message bool arming_checks(char * buffer, size_t buflen) const; // reset remaining percentage to given value virtual bool reset_remaining(float percentage); // return mavlink fault bitmask (see MAV_BATTERY_FAULT enum) virtual uint32_t get_mavlink_fault_bitmask() const { return 0; } // logging functions void Log_Write_BAT(const uint8_t instance, const uint64_t time_us) const; void Log_Write_BCL(const uint8_t instance, const uint64_t time_us) const; // set desired MPPT powered state (enabled/disabled) virtual void mppt_set_powered_state(bool power_on) {}; // Update an ESC telemetry channel's power information void update_esc_telem_outbound(); // amps: current (A) // dt_us: time between samples (micro-seconds) static float calculate_mah(float amps, float dt_us) { return (float) (amps * dt_us * AUS_TO_MAH); } // check if a option is set bool option_is_set(const AP_BattMonitor_Params::Options option) const { return (uint16_t(_params._options.get()) & uint16_t(option)) != 0; } #if AP_BATTERY_SCRIPTING_ENABLED virtual bool handle_scripting(const BattMonitorScript_State &battmon_state) { return false; } #endif protected: AP_BattMonitor &_mon; // reference to front-end AP_BattMonitor::BattMonitor_State &_state; // reference to this instances state (held in the front-end) AP_BattMonitor_Params &_params; // reference to this instances parameters (held in the front-end) // checks what failsafes could be triggered void check_failsafe_types(bool &low_voltage, bool &low_capacity, bool &critical_voltage, bool &critical_capacity) const; void update_consumed(AP_BattMonitor::BattMonitor_State &state, uint32_t dt_us); private: // resistance estimate uint32_t _resistance_timer_ms; // system time of last resistance estimate update float _voltage_filt; // filtered voltage float _current_max_amps; // maximum current since start-up float _current_filt_amps; // filtered current float _resistance_voltage_ref; // voltage used for maximum resistance calculation float _resistance_current_ref; // current used for maximum resistance calculation }; #if AP_BATTERY_SCRIPTING_ENABLED struct BattMonitorScript_State { float voltage; // Battery voltage in volts bool healthy; // True if communicating properly uint8_t cell_count; // Number of valid cells in state uint8_t capacity_remaining_pct=UINT8_MAX; // Remaining battery capacity in percent, 255 for invalid uint16_t cell_voltages[32]; // allow script to have up to 32 cells, will be limited internally uint16_t cycle_count=UINT16_MAX; // Battery cycle count, 65535 for unavailable /* all of the following float variables should be set to NaN by the script if they are not known. consumed_mah will auto-integrate if set to NaN */ float current_amps=nanf(""); // Battery current in amperes float consumed_mah=nanf(""); // Total current drawn since start-up in milliampere hours float consumed_wh=nanf(""); // Total energy drawn since start-up in watt hours float temperature=nanf(""); // Battery temperature in degrees Celsius }; #endif // AP_BATTERY_SCRIPTING_ENABLED