#include "Sub.h" // enable_motor_output() - enable and output lowest possible value to motors void Sub::enable_motor_output() { motors.output_min(); } // motors_output - send output to motors library which will adjust and send to ESCs and servos void Sub::motors_output() { // Motor detection mode controls the thrusters directly if (control_mode == Mode::Number::MOTOR_DETECT){ return; } // check if we are performing the motor test if (ap.motor_test) { verify_motor_test(); } else { motors.set_interlock(true); motors.output(); } } // Initialize new style motor test // Perform checks to see if it is ok to begin the motor test // Returns true if motor test has begun bool Sub::init_motor_test() { uint32_t tnow = AP_HAL::millis(); // Ten second cooldown period required with no do_set_motor requests required // after failure. if (tnow < last_do_motor_test_fail_ms + 10000 && last_do_motor_test_fail_ms > 0) { gcs().send_text(MAV_SEVERITY_CRITICAL, "10 second cooldown required after motor test"); return false; } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { gcs().send_text(MAV_SEVERITY_CRITICAL,"Disarm hardware safety switch before testing motors."); return false; } // Make sure we are on the ground if (!motors.armed()) { gcs().send_text(MAV_SEVERITY_WARNING, "Arm motors before testing motors."); return false; } enable_motor_output(); // set all motor outputs to zero ap.motor_test = true; return true; } // Verify new style motor test // The motor test will fail if the interval between received // MAV_CMD_DO_SET_MOTOR requests exceeds a timeout period // Returns true if it is ok to proceed with new style motor test bool Sub::verify_motor_test() { bool pass = true; // Require at least 2 Hz incoming do_set_motor requests if (AP_HAL::millis() > last_do_motor_test_ms + 500) { gcs().send_text(MAV_SEVERITY_INFO, "Motor test timed out!"); pass = false; } if (!pass) { ap.motor_test = false; AP::arming().disarm(AP_Arming::Method::MOTORTEST); last_do_motor_test_fail_ms = AP_HAL::millis(); return false; } return true; } bool Sub::handle_do_motor_test(mavlink_command_int_t command) { last_do_motor_test_ms = AP_HAL::millis(); // If we are not already testing motors, initialize test static uint32_t tLastInitializationFailed = 0; if(!ap.motor_test) { // Do not allow initializations attempt under 2 seconds // If one fails, we need to give the user time to fix the issue // instead of spamming error messages if (AP_HAL::millis() > (tLastInitializationFailed + 2000)) { if (!init_motor_test()) { gcs().send_text(MAV_SEVERITY_WARNING, "motor test initialization failed!"); tLastInitializationFailed = AP_HAL::millis(); return false; // init fail } } else { return false; } } float motor_number = command.param1; float throttle_type = command.param2; float throttle = command.param3; // float timeout_s = command.param4; // not used // float motor_count = command.param5; // not used const uint32_t test_type = command.y; if (test_type != MOTOR_TEST_ORDER_BOARD) { gcs().send_text(MAV_SEVERITY_WARNING, "bad test type %0.2f", (double)test_type); return false; // test type not supported here } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PILOT)) { gcs().send_text(MAV_SEVERITY_WARNING, "bad throttle type %0.2f", (double)throttle_type); return false; // throttle type not supported here } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PWM)) { return motors.output_test_num(motor_number, throttle); // true if motor output is set } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PERCENT)) { throttle = constrain_float(throttle, 0.0f, 100.0f); throttle = channel_throttle->get_radio_min() + throttle / 100.0f * (channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); return motors.output_test_num(motor_number, throttle); // true if motor output is set } return false; } // translate wpnav roll/pitch outputs to lateral/forward void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = wp_nav.get_roll(); int32_t forward = -wp_nav.get_pitch(); // output is reversed // constrain target forward/lateral values // The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; } // translate wpnav roll/pitch outputs to lateral/forward void Sub::translate_circle_nav_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = circle_nav.get_roll(); int32_t forward = -circle_nav.get_pitch(); // output is reversed // constrain target forward/lateral values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; } // translate pos_control roll/pitch outputs to lateral/forward void Sub::translate_pos_control_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = pos_control.get_roll_cd(); int32_t forward = -pos_control.get_pitch_cd(); // output is reversed // constrain target forward/lateral values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; }