/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #include #include "Storage.h" #include "hwdef/common/flash.h" #include "hwdef/common/posix.h" #include "sdcard.h" using namespace ChibiOS; #ifndef HAL_USE_EMPTY_STORAGE extern const AP_HAL::HAL& hal; #ifndef HAL_STORAGE_FILE // using SKETCHNAME allows the one microSD to be used // for multiple vehicle types #define HAL_STORAGE_FILE "/APM/" SKETCHNAME ".stg" #endif #ifndef HAL_STORAGE_BACKUP_FILE // location of backup file #define HAL_STORAGE_BACKUP_FILE "/APM/" SKETCHNAME ".bak" #endif #define STORAGE_FLASH_RETRIES 5 void Storage::_storage_open(void) { if (_initialised) { return; } #ifdef USE_POSIX // if we have failed filesystem init don't try again if (log_fd == -1) { return; } #endif _dirty_mask.clearall(); #if HAL_WITH_RAMTRON using_fram = fram.init(); if (using_fram) { if (!fram.read(0, _buffer, CH_STORAGE_SIZE)) { return; } _save_backup(); _initialised = true; return; } // allow for FMUv3 with no FRAM chip, fall through to flash storage #endif #ifdef STORAGE_FLASH_PAGE // load from storage backend _flash_load(); #elif defined(USE_POSIX) // allow for fallback to microSD based storage sdcard_init(); log_fd = open(HAL_STORAGE_FILE, O_RDWR|O_CREAT); if (log_fd == -1) { hal.console->printf("open failed of " HAL_STORAGE_FILE "\n"); return; } int ret = read(log_fd, _buffer, CH_STORAGE_SIZE); if (ret < 0) { hal.console->printf("read failed for " HAL_STORAGE_FILE "\n"); close(log_fd); log_fd = -1; return; } // pre-fill to full size if (lseek(log_fd, ret, SEEK_SET) != ret || write(log_fd, &_buffer[ret], CH_STORAGE_SIZE-ret) != CH_STORAGE_SIZE-ret) { hal.console->printf("setup failed for " HAL_STORAGE_FILE "\n"); close(log_fd); log_fd = -1; return; } using_filesystem = true; #endif _save_backup(); _initialised = true; } /* save a backup of storage file if we have microSD available. This is very handy for diagnostics, and for moving a copy of storage into SITL for testing */ void Storage::_save_backup(void) { #ifdef USE_POSIX // allow for fallback to microSD based storage sdcard_init(); int fd = open(HAL_STORAGE_BACKUP_FILE, O_WRONLY|O_CREAT|O_TRUNC); if (fd != -1) { write(fd, _buffer, CH_STORAGE_SIZE); close(fd); } #endif } /* mark some lines as dirty. Note that there is no attempt to avoid the race condition between this code and the _timer_tick() code below, which both update _dirty_mask. If we lose the race then the result is that a line is written more than once, but it won't result in a line not being written. */ void Storage::_mark_dirty(uint16_t loc, uint16_t length) { uint16_t end = loc + length; for (uint16_t line=loc>>CH_STORAGE_LINE_SHIFT; line <= end>>CH_STORAGE_LINE_SHIFT; line++) { _dirty_mask.set(line); } } void Storage::read_block(void *dst, uint16_t loc, size_t n) { if (loc >= sizeof(_buffer)-(n-1)) { return; } _storage_open(); memcpy(dst, &_buffer[loc], n); } void Storage::write_block(uint16_t loc, const void *src, size_t n) { if (loc >= sizeof(_buffer)-(n-1)) { return; } if (memcmp(src, &_buffer[loc], n) != 0) { _storage_open(); memcpy(&_buffer[loc], src, n); _mark_dirty(loc, n); } } void Storage::_timer_tick(void) { if (!_initialised) { return; } if (_dirty_mask.empty()) { _last_empty_ms = AP_HAL::millis(); return; } // write out the first dirty line. We don't write more // than one to keep the latency of this call to a minimum uint16_t i; for (i=0; iprintf("Storage: Using flash pages %u and %u\n", _flash_page, _flash_page+1); if (!_flash.init()) { AP_HAL::panic("unable to init flash storage"); } #else AP_HAL::panic("unable to init storage"); #endif } /* write one storage line. This also updates _dirty_mask. */ void Storage::_flash_write(uint16_t line) { #ifdef STORAGE_FLASH_PAGE if (_flash.write(line*CH_STORAGE_LINE_SIZE, CH_STORAGE_LINE_SIZE)) { // mark the line clean _dirty_mask.clear(line); } #endif } /* callback to write data to flash */ bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length) { #ifdef STORAGE_FLASH_PAGE size_t base_address = stm32_flash_getpageaddr(_flash_page+sector); for (uint8_t i=0; idelay(1); } if (_flash_erase_ok()) { // we are getting flash write errors while disarmed. Try // re-writing all of flash uint32_t now = AP_HAL::millis(); if (now - _last_re_init_ms > 5000) { _last_re_init_ms = now; bool ok = _flash.re_initialise(); hal.console->printf("Storage: failed at %u:%u for %u - re-init %u\n", (unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok); } } return false; #else return false; #endif } /* callback to read data from flash */ bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length) { size_t base_address = stm32_flash_getpageaddr(_flash_page+sector); const uint8_t *b = ((const uint8_t *)base_address)+offset; memcpy(data, b, length); return true; } /* callback to erase flash sector */ bool Storage::_flash_erase_sector(uint8_t sector) { for (uint8_t i=0; idelay(1); } return false; } /* callback to check if erase is allowed */ bool Storage::_flash_erase_ok(void) { // only allow erase while disarmed return !hal.util->get_soft_armed(); } /* consider storage healthy if we have nothing to write sometime in the last 2 seconds */ bool Storage::healthy(void) { return _initialised && AP_HAL::millis() - _last_empty_ms < 2000; } #endif // HAL_USE_EMPTY_STORAGE