/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* simple electric motor simulator class */ #include "SIM_Motor.h" #include using namespace SITL; // calculate rotational accel and thrust for a motor void Motor::calculate_forces(const Aircraft::sitl_input &input, const float thrust_scale, uint8_t motor_offset, Vector3f &rot_accel, Vector3f &thrust) { // fudge factors const float arm_scale = radians(5000); const float yaw_scale = radians(400); // get motor speed from 0 to 1 float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1); // the yaw torque of the motor Vector3f rotor_torque(0, 0, yaw_factor * motor_speed * yaw_scale); // get thrust for untilted motor thrust(0, 0, -motor_speed); // define the arm position relative to center of mass Vector3f arm(arm_scale * cosf(radians(angle)), arm_scale * sinf(radians(angle)), 0); // work out roll and pitch of motor relative to it pointing straight up float roll = 0, pitch = 0; uint64_t now = AP_HAL::micros64(); // possibly roll and/or pitch the motor if (roll_servo >= 0) { uint16_t servoval = update_servo(input.servos[roll_servo+motor_offset], now, last_roll_value); if (roll_min < roll_max) { roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); } else { roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min); } } if (pitch_servo >= 0) { uint16_t servoval = update_servo(input.servos[pitch_servo+motor_offset], now, last_pitch_value); if (pitch_min < pitch_max) { pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); } else { pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); } } last_change_usec = now; // possibly rotate the thrust vector and the rotor torque if (!is_zero(roll) || !is_zero(pitch)) { Matrix3f rotation; rotation.from_euler(radians(roll), radians(pitch), 0); thrust = rotation * thrust; rotor_torque = rotation * rotor_torque; } // calculate total rotational acceleration rot_accel = (arm % thrust) + rotor_torque; // scale the thrust thrust = thrust * thrust_scale; } /* update and return current value of a servo. Calculated as 1000..2000 */ uint16_t Motor::update_servo(uint16_t demand, uint64_t time_usec, float &last_value) { if (servo_rate <= 0) { return demand; } if (servo_type == SERVO_RETRACT) { // handle retract servos if (demand > 1700) { demand = 2000; } else if (demand < 1300) { demand = 1000; } else { demand = last_value; } } demand = constrain_int16(demand, 1000, 2000); float dt = (time_usec - last_change_usec) * 1.0e-6f; // assume servo moves through 90 degrees over 1000 to 2000 float max_change = 1000 * (dt / servo_rate) * 60.0f / 90.0f; last_value = constrain_float(demand, last_value-max_change, last_value+max_change); return uint16_t(last_value+0.5); }