#include "AP_TemperatureSensor_TSYS01.h" #if AP_TEMPERATURE_SENSOR_TSYS01_ENABLE #include #include #include #include #include extern const AP_HAL::HAL &hal; static const uint8_t TSYS01_CMD_RESET = 0x1E; static const uint8_t TSYS01_CMD_READ_PROM = 0xA0; static const uint8_t TSYS01_CMD_CONVERT = 0x40; static const uint8_t TSYS01_CMD_READ_ADC = 0x00; void AP_TemperatureSensor_TSYS01::init() { constexpr char name[] = "TSYS01"; // I2C Address: Default to using TSYS01_ADDR_CSB0 & Check I2C Address is Correct uint8_t addr = _params._i2c_address; if ((addr != TSYS01_ADDR_CSB0) && (addr != TSYS01_ADDR_CSB1)) { printf("%s, wrong I2C addr", name); return; } _dev = std::move(hal.i2c_mgr->get_device(_params._i2c_bus, _params._i2c_address)); if (!_dev) { printf("%s device is null!", name); return; } WITH_SEMAPHORE(_dev->get_semaphore()); _dev->set_retries(10); if (!_reset()) { printf("%s reset failed", name); return; } hal.scheduler->delay(4); if (!_read_prom()) { printf("%s prom read failed", name); return; } _convert(); // lower retries for run _dev->set_retries(3); /* Request 20Hz update */ // Max conversion time is 9.04 ms _dev->register_periodic_callback(50 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_TemperatureSensor_TSYS01::_timer, void)); } bool AP_TemperatureSensor_TSYS01::_reset() const { return _dev->transfer(&TSYS01_CMD_RESET, 1, nullptr, 0); } // Register map // prom word Address // 0 0xA0 -> unused // 1 0xA2 -> _k[4] // 2 0xA4 -> _k[3] // 3 0xA6 -> _k[2] // 4 0xA8 -> _k[1] // 5 0xAA -> _k[0] // 6 0xAC -> unused // 7 0xAE -> unused bool AP_TemperatureSensor_TSYS01::_read_prom() { bool success = false; for (int i = 0; i < 5; i++) { // Read only the prom values that we use _k[i] = _read_prom_word(5-i); success |= _k[i] != 0; } return success; } // Borrowed from MS Baro driver uint16_t AP_TemperatureSensor_TSYS01::_read_prom_word(uint8_t word) const { const uint8_t reg = TSYS01_CMD_READ_PROM + (word << 1); uint8_t val[2]; if (!_dev->transfer(®, 1, val, 2)) { return 0; } return (val[0] << 8) | val[1]; } bool AP_TemperatureSensor_TSYS01::_convert() const { return _dev->transfer(&TSYS01_CMD_CONVERT, 1, nullptr, 0); } uint32_t AP_TemperatureSensor_TSYS01::_read_adc() const { uint8_t val[3]; if (!_dev->transfer(&TSYS01_CMD_READ_ADC, 1, val, 3)) { return 0; } return (val[0] << 16) | (val[1] << 8) | val[2]; } void AP_TemperatureSensor_TSYS01::_timer(void) { const uint32_t adc = _read_adc(); _state.healthy = adc != 0; if (_state.healthy) { _calculate(adc); } else { _state.temperature = 0; } //printf("\nTemperature: %.2lf C", _state.temperature; _convert(); } void AP_TemperatureSensor_TSYS01::_calculate(uint32_t adc) { const float adc16 = adc/256; _state.temperature = -2 * _k[4] * powf(10, -21) * powf(adc16, 4) + 4 * _k[3] * powf(10, -16) * powf(adc16, 3) + -2 * _k[2] * powf(10, -11) * powf(adc16, 2) + 1 * _k[1] * powf(10, -6) * adc16 + -1.5 * _k[0] * powf(10, -2); } #endif // AP_TEMPERATURE_SENSOR_TSYS01_ENABLE