// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** static byte navigate() { // waypoint distance from plane in meters // --------------------------------------- wp_distance = get_distance(¤t_loc, &next_WP); home_distance = get_distance(¤t_loc, &home); if (wp_distance < 0){ //gcs_send_text_P(SEVERITY_HIGH,PSTR(" WP error - distance < 0")); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return 0; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); home_to_copter_bearing = get_bearing(&home, ¤t_loc); // nav_bearing will includes xtrac correction // ------------------------------------------ nav_bearing = target_bearing; return 1; } static bool check_missed_wp() { int32_t temp; temp = target_bearing - original_target_bearing; temp = wrap_180(temp); return (abs(temp) > 10000); //we pased the waypoint by 10 ° } // ------------------------------ static void calc_XY_velocity(){ // offset calculation of GPS speed: // used for estimations below 1.5m/s // our GPS is about 1m per static int32_t last_longitude = 0; static int32_t last_latutude = 0; // y_GPS_speed positve = Up // x_GPS_speed positve = Right // this speed is ~ in cm because we are using 10^7 numbers from GPS float tmp = 1.0/dTnav; //int8_t tmp = 5; int16_t x_diff = (g_gps->longitude - last_longitude) * tmp; int16_t y_diff = (g_gps->latitude - last_latutude) * tmp; // filter x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4; y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4; // Above simply works better than GPS groundspeed // which is proving to be problematic /*if(g_gps->ground_speed > 120){ // Derive X/Y speed from GPS // this is far more accurate when traveling about 1.5m/s float temp = g_gps->ground_course * RADX100; x_GPS_speed = sin(temp) * (float)g_gps->ground_speed; y_GPS_speed = cos(temp) * (float)g_gps->ground_speed; }*/ last_longitude = g_gps->longitude; last_latutude = g_gps->latitude; //Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed); } static void calc_location_error(struct Location *next_loc) { /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m = 36 feet 1800 = 19.80m = 60 feet 3000 = 33m 10000 = 111m */ // X Error long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East // Y Error lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North } #define NAV_ERR_MAX 800 static void calc_loiter(int x_error, int y_error) { // East/West x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); //800 int16_t x_target_speed = g.pi_loiter_lon.get_p(x_error); int16_t x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav); x_rate_error = x_target_speed - x_actual_speed; nav_lon_p = g.pi_nav_lon.get_p(x_rate_error); nav_lon_p = constrain(nav_lon_p, -1200, 1200); nav_lon = nav_lon_p + x_iterm; nav_lon = constrain(nav_lon, -2500, 2500); // North/South y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); int16_t y_target_speed = g.pi_loiter_lat.get_p(y_error); int16_t y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav); y_rate_error = y_target_speed - y_actual_speed; nav_lat_p = g.pi_nav_lat.get_p(y_rate_error); nav_lat_p = constrain(nav_lat_p, -1200, 1200); nav_lat = nav_lat_p + y_iterm; nav_lat = constrain(nav_lat, -2500, 2500); /* int8_t ttt = 1.0/dTnav; int16_t t2 = g.pi_nav_lat.get_integrator(); // 1 2 3 4 5 6 7 8 9 10 Serial.printf("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n", wp_distance, //1 y_error, //2 y_GPS_speed, //3 y_actual_speed, //4 ; y_target_speed, //5 y_rate_error, //6 nav_lat_p, //7 nav_lat, //8 y_iterm, //9 t2); //10 //*/ /* int16_t t1 = g.pi_nav_lon.get_integrator(); // X Serial.printf("%d, %1.4f, %d, %d, %d, %d, %d, %d, %d, %d\n", wp_distance, //1 dTnav, //2 x_error, //3 x_GPS_speed, //4 x_actual_speed, //5 x_target_speed, //6 x_rate_error, //7 nav_lat, //8 x_iterm, //9 t1); //10 //*/ } //wp_distance,ttt, y_error, y_GPS_speed, y_actual_speed, y_target_speed, y_rate_error, nav_lat, y_iterm, t2 #define ERR_GAIN .01 // called at 50hz static void estimate_velocity() { // we need to extimate velocity when below GPS threshold of 1.5m/s //if(g_gps->ground_speed < 120){ // some smoothing to prevent bumpy rides x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16; y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16; // integration of nav_p angle //x_actual_speed += (nav_lon_p >>2); //y_actual_speed += (nav_lat_p >>2); // this is just what worked best in SIM //x_actual_speed = (x_actual_speed * 2 + x_GPS_speed * 1) / 4; //y_actual_speed = (y_actual_speed * 2 + y_GPS_speed * 1) / 4; //}else{ // less smoothing needed since the GPS already filters // x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4; // y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4; //} } // this calculation rotates our World frame of reference to the copter's frame of reference // We use the DCM's matrix to precalculate these trig values at 50hz static void calc_loiter_pitch_roll() { //Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y); // rotate the vector nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; // flip pitch because forward is negative nav_pitch = -nav_pitch; } #if WIND_COMP_STAB == 1 static void calc_wind_compensation() { // this idea is a function that converts user input into I term for position hold // the concept is simple. The iterms always act upon flight no matter what mode were in. // when our velocity is 0, we call this function to update our iterms // otherwise we slowly reduce out iterms to 0 // take the pitch and roll of the copter and, float roll = dcm.roll_sensor; float pitch = -dcm.pitch_sensor; // flip pitch to make positive pitch forward // rotate it to eliminate yaw of Copter int32_t roll_tmp = roll * sin_yaw_y - pitch * -cos_yaw_x; int32_t pitch_tmp = roll * -cos_yaw_x + pitch * sin_yaw_y; roll_tmp = constrain(roll_tmp, -2000, 2000); pitch_tmp = constrain(pitch_tmp, -2000, 2000); // filter the input and apply it to out integrator value // nav_lon and nav_lat will be applied to normal flight // This filter is far too fast!!! //nav_lon = ((int32_t)g.pi_loiter_lon.get_integrator() * 15 + roll_tmp) / 16; //nav_lat = ((int32_t)g.pi_loiter_lat.get_integrator() * 15 + pitch_tmp) / 16; nav_lon = g.pi_loiter_lon.get_integrator(); nav_lat = g.pi_loiter_lat.get_integrator(); // Maybe a slower filter would work? if(g.pi_loiter_lon.get_integrator() > roll_tmp){ g.pi_loiter_lon.set_integrator(nav_lon - 5); }else if(g.pi_loiter_lon.get_integrator() < roll_tmp){ g.pi_loiter_lon.set_integrator(nav_lon + 5); } if(g.pi_loiter_lat.get_integrator() > pitch_tmp){ g.pi_loiter_lat.set_integrator(nav_lat - 5); }else if(g.pi_loiter_lat.get_integrator() < pitch_tmp){ g.pi_loiter_lat.set_integrator(nav_lat + 5); } // save smoothed input to integrator g.pi_loiter_lon.set_integrator(nav_lon); // X g.pi_loiter_lat.set_integrator(nav_lat); // Y //Serial.printf("build wind iterm X:%d Y:%d, r:%d, p:%d\n", // nav_lon, // nav_lat, // nav_roll, // nav_pitch); } static void reduce_wind_compensation() { //slow degradation of iterms float tmp; tmp = g.pi_loiter_lon.get_integrator(); tmp *= .98; g.pi_loiter_lon.set_integrator(tmp); // X tmp = g.pi_loiter_lat.get_integrator(); tmp *= .98; g.pi_loiter_lat.set_integrator(tmp); // Y // debug //int16_t t1 = g.pi_loiter_lon.get_integrator(); //int16_t t2 = g.pi_loiter_lon.get_integrator(); //Serial.printf("reduce wind iterm X:%d Y:%d \n", // t1, // t2); } #endif static int16_t calc_desired_speed(int16_t max_speed) { /* |< WP Radius 0 1 2 3 4 5 6 7 8m ...|...|...|...|...|...|...|...| 100 | 200 300 400cm/s | +|+ |< we should slow to 1.5 m/s as we hit the target */ // max_speed is default 600 or 6m/s // (wp_distance * 50) = 1/2 of the distance converted to speed // wp_distance is always in m/s and not cm/s - I know it's stupid that way // for example 4m from target = 200cm/s speed // we choose the lowest speed based on disance max_speed = min(max_speed, (wp_distance * 50)); // limit the ramp up of the speed // waypoint_speed_gov is reset to 0 at each new WP command if(waypoint_speed_gov < max_speed){ waypoint_speed_gov += (int)(50.0 * dTnav); // increase at .5/ms // go at least 50cm/s max_speed = max(50, waypoint_speed_gov); // limit with governer max_speed = min(max_speed, waypoint_speed_gov); } return max_speed; } static void calc_nav_rate(int max_speed) { // push us towards the original track update_crosstrack(); // nav_bearing includes crosstrack float temp = (9000 - nav_bearing) * RADX100; x_rate_error = (cos(temp) * max_speed) - x_actual_speed; // 413 x_rate_error = constrain(x_rate_error, -1000, 1000); int16_t x_iterm = g.pi_loiter_lon.get_i(x_rate_error, dTnav); nav_lon_p = g.pi_nav_lon.get_p(x_rate_error); nav_lon = nav_lon_p + x_iterm; nav_lon = constrain(nav_lon, -3000, 3000); y_rate_error = (sin(temp) * max_speed) - y_actual_speed; // 413 y_rate_error = constrain(y_rate_error, -1000, 1000); // added a rate error limit to keep pitching down to a minimum int16_t y_iterm = g.pi_loiter_lat.get_i(y_rate_error, dTnav); nav_lat_p = g.pi_nav_lat.get_p(y_rate_error); nav_lat = nav_lat_p + y_iterm; nav_lat = constrain(nav_lat, -3000, 3000); /* Serial.printf("max_sp %d,\t x_sp %d, y_sp %d,\t x_re: %d, y_re: %d, \tnav_lon: %d, nav_lat: %d, Xi:%d, Yi:%d, \t XE %d \n", max_speed, x_actual_speed, y_actual_speed, x_rate_error, y_rate_error, nav_lon, nav_lat, x_iterm, y_iterm, crosstrack_error); //*/ // nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll() /*Serial.printf("max_speed: %d, xspeed: %d, yspeed: %d, x_re: %d, y_re: %d, nav_lon: %ld, nav_lat: %ld ", max_speed, x_actual_speed, y_actual_speed, x_rate_error, y_rate_error, nav_lon, nav_lat);*/ } static void update_crosstrack(void) { // Crosstrack Error // ---------------- if (abs(wrap_180(target_bearing - original_target_bearing)) < 4500) { // If we are too far off or too close we don't do track following float temp = (target_bearing - original_target_bearing) * RADX100; crosstrack_error = sin(temp) * (wp_distance * g.crosstrack_gain); // Meters we are off track line nav_bearing = target_bearing + constrain(crosstrack_error, -3000, 3000); nav_bearing = wrap_360(nav_bearing); }else{ nav_bearing = target_bearing; } } static int32_t get_altitude_error() { return next_WP.alt - current_loc.alt; } static int32_t wrap_360(int32_t error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } static int32_t wrap_180(int32_t error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } /* //static int32_t get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } */ // distance is returned in meters static int32_t get_distance(struct Location *loc1, struct Location *loc2) { //if(loc1->lat == 0 || loc1->lng == 0) // return -1; //if(loc2->lat == 0 || loc2->lng == 0) // return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } /* //static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } */ static int32_t get_bearing(struct Location *loc1, struct Location *loc2) { int32_t off_x = loc2->lng - loc1->lng; int32_t off_y = (loc2->lat - loc1->lat) * scaleLongUp; int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }