// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include #include "RC_Channel_aux.h" const AP_Param::GroupInfo RC_Channel_aux::var_info[] PROGMEM = { AP_NESTEDGROUPINFO(RC_Channel, 0), // @Param: FUNCTION // @DisplayName: Function assigned to this APM servo output // @Description: Setting this to Disabled(0) will disable this output, any other value will enable the corresponding function // @Values: 0:Disabled,1:Manual,2:Flap,3:Flap_auto,4:Aileron,5:flaperon,6:mount_pan,7:mount_tilt,8:mount_roll,9:mount_open,10:camera_trigger,11:release // @User: Standard AP_GROUPINFO("FUNCTION", 1, RC_Channel_aux, function), // @Param: ANGLE_MIN // @DisplayName: Minimum physical angular position of the object that this servo output controls // @Description: Minimum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc // @Units: Degrees // @Range: -180 180 // @Increment: .01 // @User: Standard AP_GROUPINFO("ANGLE_MIN", 2, RC_Channel_aux, angle_min), // @Param: ANGLE_MAX // @DisplayName: Maximum physical angular position of the object that this servo output controls // @Description: Maximum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc // @Units: Degrees // @Range: -180 180 // @Increment: .01 // @User: Standard AP_GROUPINFO("ANGLE_MAX", 3, RC_Channel_aux, angle_max), AP_GROUPEND }; // Global pointer array, indexed by a "RC function enum" and points to the RC channel output assigned to that function/operation RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; int16_t RC_Channel_aux::closest_limit(int16_t angle) { // Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic int16_t min = angle_min / 10; int16_t max = angle_max / 10; // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (min < -1800) min += 3600; while (min >= 1800) min -= 3600; while (max < -1800) max += 3600; while (max >= 1800) max -= 3600; // This is done every time because the user might change the min, max values on the fly set_range(min, max); // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < min) && (angle > max)){ // angle error if min limit is used int16_t err_min = min - angle + (anglemax?0:3600); // add 360 degrees if on the "wrong side" angle = err_min 1520 && angle > angle_min)){ *control_angle += ( 1500 - radio_in ) * .0001; // .0001 is the control speed scaler. } } // Takes the desired servo angle(deg) and converts to microSeconds for PWM // Like this: 45 deg = 2000 us ; -45 deg/1000 us. 1000us/(90*100 deg) = 0.1111111111111 void RC_Channel_aux::angle_out(int16_t angle) { if(angle >= angle_max){ angle = angle_max; } if(angle <= angle_min){ angle = angle_min; } // Convert the angle*100 to pwm microseconds. 45 deg = 500 us. radio_out = (/*_reverse * */ angle * 0.1111111) + 1500; } // map a function to a servo channel and output it void RC_Channel_aux::output_ch(unsigned char ch_nr) { // take care or two corner cases switch(function) { case k_none: // disabled return; break; case k_manual: // manual radio_out = radio_in; break; } _apm_rc->OutputCh(ch_nr, radio_out); } // Update the g_rc_function array of pointers to rc_x channels // This is to be done before rc_init so that the channels get correctly initialized. // It also should be called periodically because the user might change the configuration and // expects the changes to take effect instantly void update_aux_servo_function(RC_Channel_aux* rc_5, RC_Channel_aux* rc_6, RC_Channel_aux* rc_7, RC_Channel_aux* rc_8) { // positions 0..3 of this array never get used, but this is a stack array, so the entire array gets freed at the end of the function RC_Channel_aux::Aux_servo_function_t aux_servo_function[4]; aux_servo_function[0] = (RC_Channel_aux::Aux_servo_function_t)rc_5->function.get(); aux_servo_function[1] = (RC_Channel_aux::Aux_servo_function_t)rc_6->function.get(); aux_servo_function[2] = (RC_Channel_aux::Aux_servo_function_t)rc_7->function.get(); aux_servo_function[3] = (RC_Channel_aux::Aux_servo_function_t)rc_8->function.get(); for (uint8_t i = 0; i < 4; i++) { if (aux_servo_function[i] >= RC_Channel_aux::k_nr_aux_servo_functions) { // invalid setting aux_servo_function[i] = RC_Channel_aux::k_none; } } // Assume that no auxiliary function is used for (uint8_t i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++) { g_rc_function[i] = NULL; } // assign the RC channel to each function g_rc_function[aux_servo_function[0]] = rc_5; g_rc_function[aux_servo_function[1]] = rc_6; g_rc_function[aux_servo_function[2]] = rc_7; g_rc_function[aux_servo_function[3]] = rc_8; //set auxiliary ranges G_RC_AUX(k_flap)->set_range(0,100); G_RC_AUX(k_flap_auto)->set_range(0,100); G_RC_AUX(k_aileron)->set_angle(4500); G_RC_AUX(k_flaperon)->set_range(0,100); G_RC_AUX(k_mount_yaw)->set_range( g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_min / 10, g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_max / 10); G_RC_AUX(k_mount_pitch)->set_range( g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_min / 10, g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_max / 10); G_RC_AUX(k_mount_roll)->set_range( g_rc_function[RC_Channel_aux::k_mount_roll]->angle_min / 10, g_rc_function[RC_Channel_aux::k_mount_roll]->angle_max / 10); G_RC_AUX(k_mount_open)->set_range(0,100); G_RC_AUX(k_cam_trigger)->set_range( g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_min / 10, g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_max / 10); G_RC_AUX(k_egg_drop)->set_range(0,100); }