// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Copyright 2010 Michael Smith, all rights reserved. // This library is free software; you can redistribute it and / or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // Derived closely from: /**************************************** * 2D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 18-12-2003 * 06-06-2004 * * © 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in ****************************************/ #ifndef VECTOR2_H #define VECTOR2_H #include template struct Vector2 { T x, y; // trivial ctor Vector2() { x = y = 0; } // setting ctor Vector2(const T x0, const T y0): x(x0), y(y0) {} // function call operator void operator ()(const T x0, const T y0) { x= x0; y= y0; } // test for equality bool operator==(const Vector2 &v) { return (x==v.x && y==v.y); } // test for inequality bool operator!=(const Vector2 &v) { return (x!=v.x || y!=v.y); } // negation Vector2 operator -(void) const { return Vector2(-x, -y); } // addition Vector2 operator +(const Vector2 &v) const { return Vector2(x+v.x, y+v.y); } // subtraction Vector2 operator -(const Vector2 &v) const { return Vector2(x-v.x, y-v.y); } // uniform scaling Vector2 operator *(const T num) const { Vector2 temp(*this); return temp*=num; } // uniform scaling Vector2 operator /(const T num) const { Vector2 temp(*this); return temp/=num; } // addition Vector2 &operator +=(const Vector2 &v) { x+=v.x; y+=v.y; return *this; } // subtraction Vector2 &operator -=(const Vector2 &v) { x-=v.x; y-=v.y; return *this; } // uniform scaling Vector2 &operator *=(const T num) { x*=num; y*=num; return *this; } // uniform scaling Vector2 &operator /=(const T num) { x/=num; y/=num; return *this; } // dot product T operator *(const Vector2 &v) const { return x*v.x + y*v.y; } // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // gets the length of this vector T length() const { return (T)sqrt(*this * *this); } // normalizes this vector void normalize() { *this/=length(); } // returns the normalized vector Vector2 normalized() const { return *this/length(); } // reflects this vector about n void reflect(const Vector2 &n) { Vector2 orig(*this); project(n); *this= *this*2 - orig; } // projects this vector onto v void project(const Vector2 &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v Vector2 projected(const Vector2 &v) { return v * (*this * v)/(v*v); } // computes the angle between 2 arbitrary vectors T angle(const Vector2 &v1, const Vector2 &v2) { return (T)acosf((v1*v2) / (v1.length()*v2.length())); } // computes the angle between this vector and another vector T angle(const Vector2 &v2) { return (T)acosf(((*this)*v2) / (this->length()*v2.length())); } // computes the angle between 2 normalized arbitrary vectors T angle_normalized(const Vector2 &v1, const Vector2 &v2) { return (T)acosf(v1*v2); } }; typedef Vector2 Vector2i; typedef Vector2 Vector2ui; typedef Vector2 Vector2l; typedef Vector2 Vector2ul; typedef Vector2 Vector2f; #endif // VECTOR2_H