#include "AC_AutoTune_Multi.h" /* * autotune support for multicopters * * * Instructions: * 1) Set up one flight mode switch position to be AltHold. * 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch. * 3) Ensure the ch7 or ch8 switch is in the LOW position. * 4) Wait for a calm day and go to a large open area. * 5) Take off and put the vehicle into AltHold mode at a comfortable altitude. * 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning: * a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back. * b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests). * When you release the sticks it will continue auto tuning where it left off. * c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs. * d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered. * 7) When the tune completes the vehicle will change back to the original PID gains. * 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains. * 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains. * 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently. * If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm * * What it's doing during each "twitch": * a) invokes 90 deg/sec rate request * b) records maximum "forward" roll rate and bounce back rate * c) when copter reaches 20 degrees or 1 second has passed, it commands level * d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P * e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec) * f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec) * g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec) * h) invokes a 20deg angle request on roll or pitch * i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg) * j) decreases stab P by 25% * */ #define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 1000U // timeout for tuning mode's testing step #define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing #define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing #define AUTOTUNE_RD_MAX 0.200f // maximum Rate D value #define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value #define AUTOTUNE_RLPF_MAX 5.0f // maximum Rate Yaw filter value #define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value #define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value #define AUTOTUNE_SP_MAX 40.0f // maximum Stab P value #define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value #define AUTOTUNE_RP_ACCEL_MIN 4000.0f // Minimum acceleration for Roll and Pitch #define AUTOTUNE_Y_ACCEL_MIN 1000.0f // Minimum acceleration for Yaw #define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw #define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in #define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning #define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning #define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning #define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration #define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration // roll and pitch axes #define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step // yaw axis #define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step // second table of user settable parameters for quadplanes, this // allows us to go beyond the 64 parameter limit const AP_Param::GroupInfo AC_AutoTune_Multi::var_info[] = { // @Param: AXES // @DisplayName: Autotune axis bitmask // @Description: 1-byte bitmap of axes to autotune // @Bitmask: 0:Roll,1:Pitch,2:Yaw // @User: Standard AP_GROUPINFO("AXES", 1, AC_AutoTune_Multi, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT // @Param: AGGR // @DisplayName: Autotune aggressiveness // @Description: Autotune aggressiveness. Defines the bounce back used to detect size of the D term. // @Range: 0.05 0.10 // @User: Standard AP_GROUPINFO("AGGR", 2, AC_AutoTune_Multi, aggressiveness, 0.1f), // @Param: MIN_D // @DisplayName: AutoTune minimum D // @Description: Defines the minimum D gain // @Range: 0.001 0.006 // @User: Standard AP_GROUPINFO("MIN_D", 3, AC_AutoTune_Multi, min_d, 0.001f), AP_GROUPEND }; // constructor AC_AutoTune_Multi::AC_AutoTune_Multi() { tune_seq[0] = TUNE_COMPLETE; AP_Param::setup_object_defaults(this, var_info); } void AC_AutoTune_Multi::do_gcs_announcements() { const uint32_t now = AP_HAL::millis(); if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) { return; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: %s %s %u%%", axis_string(), type_string(), (counter * (100/AUTOTUNE_SUCCESS_COUNT)) ); announce_time = now; } void AC_AutoTune_Multi::test_init() { twitch_test_init(); } void AC_AutoTune_Multi::test_run(AxisType test_axis, const float dir_sign) { twitch_test_run(test_axis, dir_sign); } // backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains void AC_AutoTune_Multi::backup_gains_and_initialise() { AC_AutoTune::backup_gains_and_initialise(); aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f); orig_bf_feedforward = attitude_control->get_bf_feedforward(); // backup original pids and initialise tuned pid values orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz(); orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); tune_roll_rp = attitude_control->get_rate_roll_pid().kP(); tune_roll_rd = attitude_control->get_rate_roll_pid().kD(); tune_roll_sp = attitude_control->get_angle_roll_p().kP(); tune_roll_accel = attitude_control->get_accel_roll_max_cdss(); orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz(); orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); tune_pitch_sp = attitude_control->get_angle_pitch_p().kP(); tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz(); orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); tune_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED); } // load_orig_gains - set gains to their original values // called by stop and failed functions void AC_AutoTune_Multi::load_orig_gains() { attitude_control->bf_feedforward(orig_bf_feedforward); if (roll_enabled()) { if (!is_zero(orig_roll_rp)) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_ri); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_angle_roll_p().kP(orig_roll_sp); attitude_control->set_accel_roll_max_cdss(orig_roll_accel); } } if (pitch_enabled()) { if (!is_zero(orig_pitch_rp)) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel); } } if (yaw_enabled()) { if (!is_zero(orig_yaw_rp)) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel); } } } // load_tuned_gains - load tuned gains void AC_AutoTune_Multi::load_tuned_gains() { if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward(true); attitude_control->set_accel_roll_max_cdss(0.0f); attitude_control->set_accel_pitch_max_cdss(0.0f); } if (roll_enabled()) { if (!is_zero(tune_roll_rp)) { attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->set_accel_roll_max_cdss(tune_roll_accel); } } if (pitch_enabled()) { if (!is_zero(tune_pitch_rp)) { attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->set_accel_pitch_max_cdss(tune_pitch_accel); } } if (yaw_enabled()) { if (!is_zero(tune_yaw_rp)) { attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->set_accel_yaw_max_cdss(tune_yaw_accel); } } } // load_intra_test_gains - gains used between tests // called during testing mode's update-gains step to set gains ahead of return-to-level step void AC_AutoTune_Multi::load_intra_test_gains() { // we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) // sanity check the gains attitude_control->bf_feedforward(true); if (roll_enabled()) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_angle_roll_p().kP(orig_roll_sp); } if (pitch_enabled()) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); } if (yaw_enabled()) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); } } // load_test_gains - load the to-be-tested gains for a single axis // called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) void AC_AutoTune_Multi::load_test_gains() { switch (axis) { case ROLL: attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*0.01f); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(0.0f); attitude_control->get_rate_roll_pid().filt_T_hz(0.0f); attitude_control->get_rate_roll_pid().slew_limit(0.0f); attitude_control->get_angle_roll_p().kP(tune_roll_sp); break; case PITCH: attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*0.01f); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(0.0f); attitude_control->get_rate_pitch_pid().filt_T_hz(0.0f); attitude_control->get_rate_pitch_pid().slew_limit(0.0f); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); break; case YAW: attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(0.0f); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(0.0f); attitude_control->get_rate_yaw_pid().slew_limit(0.0f); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); break; } } // save_tuning_gains - save the final tuned gains for each axis // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) void AC_AutoTune_Multi::save_tuning_gains() { // see if we successfully completed tuning of at least one axis if (axes_completed == 0) { return; } if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward_save(true); attitude_control->save_accel_roll_max_cdss(0.0f); attitude_control->save_accel_pitch_max_cdss(0.0f); } // sanity check the rate P values if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) { // rate roll gains attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_rate_roll_pid().save_gains(); // stabilize roll attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->get_angle_roll_p().save_gains(); // acceleration roll attitude_control->save_accel_roll_max_cdss(tune_roll_accel); // resave pids to originals in case the autotune is run again orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) { // rate pitch gains attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_rate_pitch_pid().save_gains(); // stabilize pitch attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->get_angle_pitch_p().save_gains(); // acceleration pitch attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel); // resave pids to originals in case the autotune is run again orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { // rate yaw gains attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().save_gains(); // stabilize yaw attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->get_angle_yaw_p().save_gains(); // acceleration yaw attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel); // resave pids to originals in case the autotune is run again orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); } // update GCS and log save gains event update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS); reset(); } // report final gains for a given axis to GCS void AC_AutoTune_Multi::report_final_gains(AxisType test_axis) const { switch (test_axis) { case ROLL: report_axis_gains("Roll", tune_roll_rp, tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL, tune_roll_rd, tune_roll_sp, tune_roll_accel); break; case PITCH: report_axis_gains("Pitch", tune_pitch_rp, tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel); break; case YAW: report_axis_gains("Yaw", tune_yaw_rp, tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL, 0, tune_yaw_sp, tune_yaw_accel); break; } } // report gain formating helper void AC_AutoTune_Multi::report_axis_gains(const char* axis_string, float rate_P, float rate_I, float rate_D, float angle_P, float max_accel) const { gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s complete", axis_string); gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Rate: P:%0.3f, I:%0.3f, D:%0.4f",axis_string,rate_P,rate_I,rate_D); gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Angle P:%0.3f, Max Accel:%0.0f",axis_string,angle_P,max_accel); } // twitching_test_rate - twitching tests // update min and max and test for end conditions void AC_AutoTune_Multi::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max) { const uint32_t now = AP_HAL::millis(); // capture maximum rate if (rate > meas_rate_max) { // the measurement is continuing to increase without stopping meas_rate_max = rate; meas_rate_min = rate; } // capture minimum measurement after the measurement has peaked (aka "bounce back") if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) { // the measurement is bouncing back meas_rate_min = rate; } // calculate early stopping time based on the time it takes to get to 75% if (meas_rate_max < rate_target_max * 0.75f) { // the measurement not reached the 75% threshold yet step_time_limit_ms = (now - step_start_time_ms) * 3; step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); } if (meas_rate_max > rate_target_max) { // the measured rate has passed the maximum target rate step = UPDATE_GAINS; } if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { // the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold step = UPDATE_GAINS; } if (now - step_start_time_ms >= step_time_limit_ms) { // we have passed the maximum stop time step = UPDATE_GAINS; } } // twitching_test_rate - twitching tests // update min and max and test for end conditions void AC_AutoTune_Multi::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min) { if (angle >= angle_max) { if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) { // we have reached the angle limit before completing the measurement of maximum and minimum // reduce the maximum target rate step_scaler *= 0.9f; // ignore result and start test again step = WAITING_FOR_LEVEL; } else { step = UPDATE_GAINS; } } } // twitching_test_angle - twitching tests // update min and max and test for end conditions void AC_AutoTune_Multi::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max) { const uint32_t now = AP_HAL::millis(); // capture maximum angle if (angle > meas_angle_max) { // the angle still increasing meas_angle_max = angle; meas_angle_min = angle; } // capture minimum angle after we have reached a reasonable maximum angle if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) { // the measurement is bouncing back meas_angle_min = angle; } // capture maximum rate if (rate > meas_rate_max) { // the measurement is still increasing meas_rate_max = rate; meas_rate_min = rate; } // capture minimum rate after we have reached maximum rate if (rate < meas_rate_min) { // the measurement is still decreasing meas_rate_min = rate; } // calculate early stopping time based on the time it takes to get to 75% if (meas_angle_max < angle_target_max * 0.75f) { // the measurement not reached the 75% threshold yet step_time_limit_ms = (now - step_start_time_ms) * 3; step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); } if (meas_angle_max > angle_target_max) { // the measurement has passed the maximum angle step = UPDATE_GAINS; } if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) { // the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold step = UPDATE_GAINS; } if (now - step_start_time_ms >= step_time_limit_ms) { // we have passed the maximum stop time step = UPDATE_GAINS; } } // twitching_measure_acceleration - measure rate of change of measurement void AC_AutoTune_Multi::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const { if (rate_measurement_max < rate_measurement) { rate_measurement_max = rate_measurement; rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms); } } // update gains for the rate p up tune type void AC_AutoTune_Multi::updating_rate_p_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_p_up_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_p_up_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } } // update gains for the rate d up tune type void AC_AutoTune_Multi::updating_rate_d_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_d_up(tune_roll_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_d_up(tune_pitch_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } } // update gains for the rate d down tune type void AC_AutoTune_Multi::updating_rate_d_down_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } } // update gains for the angle p up tune type void AC_AutoTune_Multi::updating_angle_p_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case PITCH: updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case YAW: updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; } } // update gains for the angle p down tune type void AC_AutoTune_Multi::updating_angle_p_down_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case PITCH: updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case YAW: updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; } } // set gains post tune for the tune type void AC_AutoTune_Multi::set_gains_post_tune(AxisType test_axis) { switch (tune_type) { case RD_UP: break; case RD_DOWN: switch (test_axis) { case ROLL: tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF); tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RD_BACKOFF); break; case PITCH: tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF); tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RD_BACKOFF); break; case YAW: tune_yaw_rLPF = MAX(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF); tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RD_BACKOFF); break; } break; case RP_UP: switch (test_axis) { case ROLL: tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF); break; case PITCH: tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF); break; case YAW: tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF); break; } break; case SP_DOWN: break; case SP_UP: switch (test_axis) { case ROLL: tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF); tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); break; case PITCH: tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF); tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); break; case YAW: tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF); tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF); break; } break; case RFF_UP: case MAX_GAINS: // this should never happen INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); break; case TUNE_COMPLETE: break; } } // updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back // optimize D term while keeping the maximum just below the target by adjusting P void AC_AutoTune_Multi::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D gain so stop tuning tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { // we have a good measurement of bounce back if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { // ignore the next result unless it is the same as this one ignore_next = true; // bounce back is bigger than our threshold so increment the success counter counter++; } else { if (ignore_next == false) { // bounce back is smaller than our threshold so decrement the success counter if (counter > 0) { counter--; } // increase D gain (which should increase bounce back) tune_d += tune_d*tune_d_step_ratio*2.0f; // stop tuning if we hit maximum D if (tune_d >= tune_d_max) { tune_d = tune_d_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } } // updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back // optimize D term while keeping the maximum just below the target by adjusting P void AC_AutoTune_Multi::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D gain tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D so stop tuning tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { // we have a good measurement of bounce back if (meas_rate_max-meas_rate_min < meas_rate_max*aggressiveness) { if (ignore_next == false) { // bounce back is less than our threshold so increment the success counter counter++; } else { ignore_next = false; } } else { // ignore the next result unless it is the same as this one ignore_next = true; // bounce back is larger than our threshold so decrement the success counter if (counter > 0) { counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // stop tuning if we hit minimum D if (tune_d <= tune_d_min) { tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } } // updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing // P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold void AC_AutoTune_Multi::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target*(1+0.5f*aggressiveness)) { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was greater than target so increment the success counter counter++; } else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) && (tune_d > tune_d_min)) { // if bounce back was larger than the threshold so decrement the success counter if (counter > 0) { counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // do not decrease the D term past the minimum if (tune_d <= tune_d_min) { tune_d = tune_d_min; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } // decrease P gain to match D gain reduction tune_p -= tune_p*tune_p_step_ratio; // do not decrease the P term past the minimum if (tune_p <= tune_p_min) { tune_p = tune_p_min; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } // cancel change in direction positive_direction = !positive_direction; } else { if (ignore_next == false) { // if maximum measurement was lower than target so decrement the success counter if (counter > 0) { counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } // updating_angle_p_down - decrease P until we don't reach the target before time out // P is decreased to ensure we are not overshooting the target void AC_AutoTune_Multi::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) { if (meas_angle_max < angle_target*(1+0.5f*aggressiveness)) { if (ignore_next == false) { // if maximum measurement was lower than target so increment the success counter counter++; } else { ignore_next = false; } } else { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was higher than target so decrement the success counter if (counter > 0) { counter--; } // decrease P gain (which should decrease the maximum) tune_p -= tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p <= tune_p_min) { tune_p = tune_p_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } // updating_angle_p_up - increase P to ensure the target is reached // P is increased until we achieve our target within a reasonable time void AC_AutoTune_Multi::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) { if ((meas_angle_max > angle_target*(1+0.5f*aggressiveness)) || ((meas_angle_max > angle_target) && (meas_rate_min < -meas_rate_max*aggressiveness))) { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was greater than target so increment the success counter counter++; } else { if (ignore_next == false) { // if maximum measurement was lower than target so decrement the success counter if (counter > 0) { counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } void AC_AutoTune_Multi::Log_AutoTune() { if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); break; } } else { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); break; } } } void AC_AutoTune_Multi::Log_AutoTuneDetails() { Log_Write_AutoTuneDetails(lean_angle, rotation_rate); } // @LoggerMessage: ATUN // @Description: Copter/QuadPlane AutoTune // @Vehicles: Copter, Plane // @Field: TimeUS: Time since system startup // @Field: Axis: which axis is currently being tuned // @Field: TuneStep: step in autotune process // @Field: Targ: target angle or rate, depending on tuning step // @Field: Min: measured minimum target angle or rate // @Field: Max: measured maximum target angle or rate // @Field: RP: new rate gain P term // @Field: RD: new rate gain D term // @Field: SP: new angle P term // @Field: ddt: maximum measured twitching acceleration // Write an Autotune data packet void AC_AutoTune_Multi::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt) { AP::logger().Write( "ATUN", "TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt", "s--ddd---o", "F--000---0", "QBBfffffff", AP_HAL::micros64(), axis, tune_step, meas_target*0.01f, meas_min*0.01f, meas_max*0.01f, new_gain_rp, new_gain_rd, new_gain_sp, new_ddt); } // Write an Autotune data packet void AC_AutoTune_Multi::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) { // @LoggerMessage: ATDE // @Description: AutoTune data packet // @Field: TimeUS: Time since system startup // @Field: Angle: current angle // @Field: Rate: current angular rate AP::logger().WriteStreaming( "ATDE", "TimeUS,Angle,Rate", "sdk", "F00", "Qff", AP_HAL::micros64(), angle_cd*0.01f, rate_cds*0.01f); } void AC_AutoTune_Multi::twitch_test_init() { float target_max_rate; switch (axis) { case ROLL: { target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f); break; } case PITCH: { target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f); break; } case YAW: { target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD); rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ); break; } } if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { rotation_rate_filt.reset(start_rate); } else { rotation_rate_filt.reset(0); } } //run twitch test void AC_AutoTune_Multi::twitch_test_run(AxisType test_axis, const float dir_sign) { // disable rate limits attitude_control->use_sqrt_controller(false); // hold current attitude attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { // step angle targets on first iteration if (twitch_first_iter) { twitch_first_iter = false; // Testing increasing stabilize P gain so will set lean angle target switch (test_axis) { case ROLL: // request roll to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(dir_sign * target_angle, 0.0f, 0.0f); break; case PITCH: // request pitch to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, dir_sign * target_angle, 0.0f); break; case YAW: // request pitch to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, dir_sign * target_angle); break; } } } else { // Testing rate P and D gains so will set body-frame rate targets. // Rate controller will use existing body-frame rates and convert to motor outputs // for all axes except the one we override here. switch (test_axis) { case ROLL: // override body-frame roll rate attitude_control->rate_bf_roll_target(dir_sign * target_rate + start_rate); break; case PITCH: // override body-frame pitch rate attitude_control->rate_bf_pitch_target(dir_sign * target_rate + start_rate); break; case YAW: // override body-frame yaw rate attitude_control->rate_bf_yaw_target(dir_sign * target_rate + start_rate); break; } } // capture this iteration's rotation rate and lean angle float gyro_reading = 0; switch (test_axis) { case ROLL: gyro_reading = ahrs_view->get_gyro().x; lean_angle = dir_sign * (ahrs_view->roll_sensor - (int32_t)start_angle); break; case PITCH: gyro_reading = ahrs_view->get_gyro().y; lean_angle = dir_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle); break; case YAW: gyro_reading = ahrs_view->get_gyro().z; lean_angle = dir_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle); break; } // Add filter to measurements float filter_value; switch (tune_type) { case SP_DOWN: case SP_UP: filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f); break; default: filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f - start_rate); break; } rotation_rate = rotation_rate_filt.apply(filter_value, AP::scheduler().get_loop_period_s()); switch (tune_type) { case RD_UP: case RD_DOWN: twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); break; case RP_UP: twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); break; case SP_DOWN: case SP_UP: twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate - dir_sign * start_rate, rate_max); break; case RFF_UP: case MAX_GAINS: // this should never happen INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); break; default: break; } } // get_testing_step_timeout_ms accessor uint32_t AC_AutoTune_Multi::get_testing_step_timeout_ms() const { return AUTOTUNE_TESTING_STEP_TIMEOUT_MS; }