#include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_HAL_PX4.h" #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include "UARTDriver.h" #include "AnalogIn.h" #include "Storage.h" #include "RCOutput.h" #include "RCInput.h" #include #include using namespace PX4; extern const AP_HAL::HAL& hal; extern bool _px4_thread_should_exit; PX4Scheduler::PX4Scheduler() : _perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")), _perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")), _perf_storage_timer(perf_alloc(PC_ELAPSED, "APM_storage_timers")), _perf_delay(perf_alloc(PC_ELAPSED, "APM_delay")) {} void PX4Scheduler::init() { _main_task_pid = getpid(); // setup the timer thread - this will call tasks at 1kHz pthread_attr_t thread_attr; struct sched_param param; pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 2048); param.sched_priority = APM_TIMER_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); pthread_create(&_timer_thread_ctx, &thread_attr, &PX4Scheduler::_timer_thread, this); // the UART thread runs at a medium priority pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 2048); param.sched_priority = APM_UART_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); pthread_create(&_uart_thread_ctx, &thread_attr, &PX4Scheduler::_uart_thread, this); // the IO thread runs at lower priority pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 2048); param.sched_priority = APM_IO_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); pthread_create(&_io_thread_ctx, &thread_attr, &PX4Scheduler::_io_thread, this); // the storage thread runs at just above IO priority pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 1024); param.sched_priority = APM_STORAGE_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); pthread_create(&_storage_thread_ctx, &thread_attr, &PX4Scheduler::_storage_thread, this); } /** delay for a specified number of microseconds using a semaphore wait */ void PX4Scheduler::delay_microseconds_semaphore(uint16_t usec) { sem_t wait_semaphore; struct hrt_call wait_call; sem_init(&wait_semaphore, 0, 0); memset(&wait_call, 0, sizeof(wait_call)); hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore); sem_wait(&wait_semaphore); } void PX4Scheduler::delay_microseconds(uint16_t usec) { perf_begin(_perf_delay); delay_microseconds_semaphore(usec); perf_end(_perf_delay); } /* wrapper around sem_post that boosts main thread priority */ static void sem_post_boost(sem_t *sem) { hal_px4_set_priority(APM_MAIN_PRIORITY_BOOST); sem_post(sem); } /* return the main thread to normal priority */ static void set_normal_priority(void *sem) { hal_px4_set_priority(APM_MAIN_PRIORITY); } /* a variant of delay_microseconds that boosts priority to APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC microseconds when the time completes. This significantly improves the regularity of timing of the main loop as it takes */ void PX4Scheduler::delay_microseconds_boost(uint16_t usec) { sem_t wait_semaphore; static struct hrt_call wait_call; sem_init(&wait_semaphore, 0, 0); hrt_call_after(&wait_call, usec, (hrt_callout)sem_post_boost, &wait_semaphore); sem_wait(&wait_semaphore); hrt_call_after(&wait_call, APM_MAIN_PRIORITY_BOOST_USEC, (hrt_callout)set_normal_priority, nullptr); } void PX4Scheduler::delay(uint16_t ms) { perf_begin(_perf_delay); uint64_t start = AP_HAL::micros64(); while ((AP_HAL::micros64() - start)/1000 < ms && !_px4_thread_should_exit) { delay_microseconds_semaphore(1000); if (in_main_thread() && _min_delay_cb_ms <= ms) { call_delay_cb(); } } perf_end(_perf_delay); if (_px4_thread_should_exit) { exit(1); } } void PX4Scheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } else { hal.console->printf("Out of timer processes\n"); } } void PX4Scheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } else { hal.console->printf("Out of IO processes\n"); } } void PX4Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void PX4Scheduler::reboot(bool hold_in_bootloader) { // disarm motors to ensure they are off during a bootloader upload hal.rcout->force_safety_on(); hal.rcout->force_safety_no_wait(); // delay to ensure the async force_saftey operation completes delay(500); px4_systemreset(hold_in_bootloader); } void PX4Scheduler::_run_timers() { if (_in_timer_proc) { return; } _in_timer_proc = true; // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } // and the failsafe, if one is setup if (_failsafe != nullptr) { _failsafe(); } // process analog input ((PX4AnalogIn *)hal.analogin)->_timer_tick(); _in_timer_proc = false; } extern bool px4_ran_overtime; void *PX4Scheduler::_timer_thread(void *arg) { PX4Scheduler *sched = (PX4Scheduler *)arg; uint32_t last_ran_overtime = 0; pthread_setname_np(pthread_self(), "apm_timer"); while (!sched->_hal_initialized) { poll(nullptr, 0, 1); } while (!_px4_thread_should_exit) { sched->delay_microseconds_semaphore(1000); // run registered timers perf_begin(sched->_perf_timers); sched->_run_timers(); perf_end(sched->_perf_timers); // process any pending RC output requests hal.rcout->timer_tick(); // process any pending RC input requests ((PX4RCInput *)hal.rcin)->_timer_tick(); if (px4_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) { last_ran_overtime = AP_HAL::millis(); #if 0 printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); #endif } } return nullptr; } void PX4Scheduler::_run_io(void) { if (_in_io_proc) { return; } _in_io_proc = true; // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } _in_io_proc = false; } void *PX4Scheduler::_uart_thread(void *arg) { PX4Scheduler *sched = (PX4Scheduler *)arg; pthread_setname_np(pthread_self(), "apm_uart"); while (!sched->_hal_initialized) { poll(nullptr, 0, 1); } while (!_px4_thread_should_exit) { sched->delay_microseconds_semaphore(1000); // process any pending serial bytes hal.uartA->_timer_tick(); hal.uartB->_timer_tick(); hal.uartC->_timer_tick(); hal.uartD->_timer_tick(); hal.uartE->_timer_tick(); hal.uartF->_timer_tick(); } return nullptr; } void *PX4Scheduler::_io_thread(void *arg) { PX4Scheduler *sched = (PX4Scheduler *)arg; pthread_setname_np(pthread_self(), "apm_io"); while (!sched->_hal_initialized) { poll(nullptr, 0, 1); } while (!_px4_thread_should_exit) { sched->delay_microseconds_semaphore(1000); // run registered IO processes perf_begin(sched->_perf_io_timers); sched->_run_io(); perf_end(sched->_perf_io_timers); } return nullptr; } void *PX4Scheduler::_storage_thread(void *arg) { PX4Scheduler *sched = (PX4Scheduler *)arg; pthread_setname_np(pthread_self(), "apm_storage"); while (!sched->_hal_initialized) { poll(nullptr, 0, 1); } while (!_px4_thread_should_exit) { sched->delay_microseconds_semaphore(10000); // process any pending storage writes perf_begin(sched->_perf_storage_timer); hal.storage->_timer_tick(); perf_end(sched->_perf_storage_timer); } return nullptr; } bool PX4Scheduler::in_main_thread() const { return getpid() == _main_task_pid; } void PX4Scheduler::system_initialized() { if (_initialized) { AP_HAL::panic("PANIC: scheduler::system_initialized called" "more than once"); } _initialized = true; } /* disable interrupts and return a context that can be used to restore the interrupt state. This can be used to protect critical regions */ void *PX4Scheduler::disable_interrupts_save(void) { return (void *)(uintptr_t)irqsave(); } /* restore interrupt state from disable_interrupts_save() */ void PX4Scheduler::restore_interrupts(void *state) { irqrestore((irqstate_t)(uintptr_t)state); } /* trampoline for thread create */ void *PX4Scheduler::thread_create_trampoline(void *ctx) { AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx; (*t)(); free(t); return nullptr; } /* create a new thread */ bool PX4Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority) { // take a copy of the MemberProc, it is freed after thread exits AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc)); if (!tproc) { return false; } *tproc = proc; uint8_t thread_priority = APM_IO_PRIORITY; static const struct { priority_base base; uint8_t p; } priority_map[] = { { PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST}, { PRIORITY_MAIN, APM_MAIN_PRIORITY}, { PRIORITY_SPI, APM_SPI_PRIORITY}, { PRIORITY_I2C, APM_I2C_PRIORITY}, { PRIORITY_CAN, APM_CAN_PRIORITY}, { PRIORITY_TIMER, APM_TIMER_PRIORITY}, { PRIORITY_RCIN, APM_TIMER_PRIORITY}, { PRIORITY_IO, APM_IO_PRIORITY}, { PRIORITY_UART, APM_UART_PRIORITY}, { PRIORITY_STORAGE, APM_STORAGE_PRIORITY}, }; for (uint8_t i=0; i