/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* implementation of Robotis Dynamixel 2.0 protocol for controlling servos Portions of this code are based on the dynamixel_sdk code: https://github.com/ROBOTIS-GIT/DynamixelSDK which is under the following license: * Copyright 2017 ROBOTIS CO., LTD. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "AP_RobotisServo.h" #if NUM_SERVO_CHANNELS extern const AP_HAL::HAL& hal; #define BROADCAST_ID 0xFE #define MAX_ID 0xFC // DXL protocol common commands #define INST_PING 1 #define INST_READ 2 #define INST_WRITE 3 #define INST_REG_WRITE 4 #define INST_ACTION 5 #define INST_FACTORY_RESET 6 #define INST_CLEAR 16 #define INST_SYNC_WRITE 131 #define INST_BULK_READ 146 // 2.0 protocol commands #define INST_REBOOT 8 #define INST_STATUS 85 #define INST_SYNC_READ 130 #define INST_BULK_WRITE 147 // 2.0 protocol packet offsets #define PKT_HEADER0 0 #define PKT_HEADER1 1 #define PKT_HEADER2 2 #define PKT_RESERVED 3 #define PKT_ID 4 #define PKT_LENGTH_L 5 #define PKT_LENGTH_H 6 #define PKT_INSTRUCTION 7 #define PKT_ERROR 8 #define PKT_PARAMETER0 8 /* Macro for Control Table Value */ #define DXL_MAKEWORD(a, b) ((uint16_t)(((uint8_t)(((uint64_t)(a)) & 0xff)) | ((uint16_t)((uint8_t)(((uint64_t)(b)) & 0xff))) << 8)) #define DXL_MAKEDWORD(a, b) ((uint32_t)(((uint16_t)(((uint64_t)(a)) & 0xffff)) | ((uint32_t)((uint16_t)(((uint64_t)(b)) & 0xffff))) << 16)) #define DXL_LOWORD(l) ((uint16_t)(((uint64_t)(l)) & 0xffff)) #define DXL_HIWORD(l) ((uint16_t)((((uint64_t)(l)) >> 16) & 0xffff)) #define DXL_LOBYTE(w) ((uint8_t)(((uint64_t)(w)) & 0xff)) #define DXL_HIBYTE(w) ((uint8_t)((((uint64_t)(w)) >> 8) & 0xff)) // register offsets #define REG_OPERATING_MODE 11 #define OPMODE_CURR_CONTROL 0 #define OPMODE_VEL_CONTROL 1 #define OPMODE_POS_CONTROL 3 #define OPMODE_EXT_POS_CONTROL 4 #define REG_TORQUE_ENABLE 64 #define REG_STATUS_RETURN 68 #define STATUS_RETURN_NONE 0 #define STATUS_RETURN_READ 1 #define STATUS_RETURN_ALL 2 #define REG_GOAL_POSITION 116 // how many times to send servo configure msgs #define CONFIGURE_SERVO_COUNT 4 // how many times to send servo detection #define DETECT_SERVO_COUNT 4 const AP_Param::GroupInfo AP_RobotisServo::var_info[] = { // @Param: POSMIN // @DisplayName: Robotis servo position min // @Description: Position minimum at servo min value. This should be within the position control range of the servos, normally 0 to 4095 // @Range: 0 4095 // @User: Standard AP_GROUPINFO("POSMIN", 1, AP_RobotisServo, pos_min, 0), // @Param: POSMAX // @DisplayName: Robotis servo position max // @Description: Position maximum at servo max value. This should be within the position control range of the servos, normally 0 to 4095 // @Range: 0 4095 // @User: Standard AP_GROUPINFO("POSMAX", 2, AP_RobotisServo, pos_max, 4095), AP_GROUPEND }; // constructor AP_RobotisServo::AP_RobotisServo(void) { // set defaults from the parameter table AP_Param::setup_object_defaults(this, var_info); } void AP_RobotisServo::init(void) { AP_SerialManager &serial_manager = AP::serialmanager(); port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Robotis,0); if (port) { baudrate = serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Robotis, 0); us_per_byte = 10 * 1e6 / baudrate; us_gap = 4 * 1e6 / baudrate; } } /* addStuffing() from Robotis SDK. This pads the packet as required by the protocol */ void AP_RobotisServo::add_stuffing(uint8_t *packet) { int packet_length_in = DXL_MAKEWORD(packet[PKT_LENGTH_L], packet[PKT_LENGTH_H]); int packet_length_out = packet_length_in; if (packet_length_in < 8) { // INSTRUCTION, ADDR_L, ADDR_H, CRC16_L, CRC16_H + FF FF FD return; } uint8_t *packet_ptr; uint16_t packet_length_before_crc = packet_length_in - 2; for (uint16_t i = 3; i < packet_length_before_crc; i++) { packet_ptr = &packet[i+PKT_INSTRUCTION-2]; if (packet_ptr[0] == 0xFF && packet_ptr[1] == 0xFF && packet_ptr[2] == 0xFD) { packet_length_out++; } } if (packet_length_in == packet_length_out) { // no stuffing required return; } uint16_t out_index = packet_length_out + 6 - 2; // last index before crc uint16_t in_index = packet_length_in + 6 - 2; // last index before crc while (out_index != in_index) { if (packet[in_index] == 0xFD && packet[in_index-1] == 0xFF && packet[in_index-2] == 0xFF) { packet[out_index--] = 0xFD; // byte stuffing if (out_index != in_index) { packet[out_index--] = packet[in_index--]; // FD packet[out_index--] = packet[in_index--]; // FF packet[out_index--] = packet[in_index--]; // FF } } else { packet[out_index--] = packet[in_index--]; } } packet[PKT_LENGTH_L] = DXL_LOBYTE(packet_length_out); packet[PKT_LENGTH_H] = DXL_HIBYTE(packet_length_out); } /* send a protocol 2.0 packet */ void AP_RobotisServo::send_packet(uint8_t *txpacket) { add_stuffing(txpacket); // check max packet length uint16_t total_packet_length = DXL_MAKEWORD(txpacket[PKT_LENGTH_L], txpacket[PKT_LENGTH_H]) + 7; // make packet header txpacket[PKT_HEADER0] = 0xFF; txpacket[PKT_HEADER1] = 0xFF; txpacket[PKT_HEADER2] = 0xFD; txpacket[PKT_RESERVED] = 0x00; // add CRC16 uint16_t crc = crc_crc16_ibm(0, txpacket, total_packet_length - 2); // 2: CRC16 txpacket[total_packet_length - 2] = DXL_LOBYTE(crc); txpacket[total_packet_length - 1] = DXL_HIBYTE(crc); port->write(txpacket, total_packet_length); delay_time_us += total_packet_length * us_per_byte + us_gap; } /* use a broadcast ping to find attached servos */ void AP_RobotisServo::detect_servos(void) { uint8_t txpacket[10] {}; txpacket[PKT_ID] = BROADCAST_ID; txpacket[PKT_LENGTH_L] = 3; txpacket[PKT_LENGTH_H] = 0; txpacket[PKT_INSTRUCTION] = INST_PING; send_packet(txpacket); // give plenty of time for replies from all servos last_send_us = AP_HAL::micros(); delay_time_us += 1000 * us_per_byte; } /* broadcast configure all servos */ void AP_RobotisServo::configure_servos(void) { // disable torque control send_command(BROADCAST_ID, REG_TORQUE_ENABLE, 0, 1); // disable replies unless we read send_command(BROADCAST_ID, REG_STATUS_RETURN, STATUS_RETURN_READ, 1); // use position control mode send_command(BROADCAST_ID, REG_OPERATING_MODE, OPMODE_POS_CONTROL, 1); // enable torque control send_command(BROADCAST_ID, REG_TORQUE_ENABLE, 1, 1); } /* send a command to a single servo, changing a register value */ void AP_RobotisServo::send_command(uint8_t id, uint16_t reg, uint32_t value, uint8_t len) { uint8_t txpacket[16] {}; txpacket[PKT_ID] = id; txpacket[PKT_LENGTH_L] = 5 + len; txpacket[PKT_LENGTH_H] = 0; txpacket[PKT_INSTRUCTION] = INST_WRITE; txpacket[PKT_INSTRUCTION+1] = DXL_LOBYTE(reg); txpacket[PKT_INSTRUCTION+2] = DXL_HIBYTE(reg); memcpy(&txpacket[PKT_INSTRUCTION+3], &value, MIN(len,4)); send_packet(txpacket); } /* read response bytes */ void AP_RobotisServo::read_bytes(void) { uint32_t n = port->available(); if (n == 0 && pktbuf_ofs < PKT_INSTRUCTION) { return; } if (n > sizeof(pktbuf) - pktbuf_ofs) { n = sizeof(pktbuf) - pktbuf_ofs; } for (uint8_t i=0; iread(); } // discard bad leading data. This should be rare while (pktbuf_ofs >= 4 && (pktbuf[0] != 0xFF || pktbuf[1] != 0xFF || pktbuf[2] != 0xFD || pktbuf[3] != 0x00)) { memmove(pktbuf, &pktbuf[1], pktbuf_ofs-1); pktbuf_ofs--; } if (pktbuf_ofs < 10) { // not enough data yet return; } const uint16_t total_packet_length = DXL_MAKEWORD(pktbuf[PKT_LENGTH_L], pktbuf[PKT_LENGTH_H]) + PKT_INSTRUCTION; if (total_packet_length > sizeof(pktbuf)) { pktbuf_ofs = 0; return; } if (pktbuf_ofs < total_packet_length) { // more data needed return; } // check CRC const uint16_t crc = DXL_MAKEWORD(pktbuf[total_packet_length-2], pktbuf[total_packet_length-1]); const uint16_t calc_crc = crc_crc16_ibm(0, pktbuf, total_packet_length - 2); if (calc_crc != crc) { memmove(pktbuf, &pktbuf[total_packet_length], pktbuf_ofs - total_packet_length); pktbuf_ofs -= total_packet_length; return; } // process full packet process_packet(pktbuf, total_packet_length); memmove(pktbuf, &pktbuf[total_packet_length], pktbuf_ofs - total_packet_length); pktbuf_ofs -= total_packet_length; } /* process a packet from a servo */ void AP_RobotisServo::process_packet(const uint8_t *pkt, uint8_t length) { uint8_t id = pkt[PKT_ID]; if (id > 16 || id < 1) { // discard packets from servos beyond max or min. Note that we // don't allow servo 0, to make mapping to SERVOn_* parameters // easier return; } uint16_t id_mask = (1U<<(id-1)); if (!(id_mask & servo_mask)) { // mark the servo as present servo_mask |= id_mask; hal.console->printf("Robotis: new servo %u\n", id); } } void AP_RobotisServo::update() { if (!initialised) { initialised = true; init(); last_send_us = AP_HAL::micros(); return; } if (port == nullptr) { return; } read_bytes(); uint32_t now = AP_HAL::micros(); if (last_send_us != 0 && now - last_send_us < delay_time_us) { // waiting for last send to complete return; } if (detection_count < DETECT_SERVO_COUNT) { detection_count++; detect_servos(); } if (servo_mask == 0) { return; } if (configured_servos < CONFIGURE_SERVO_COUNT) { configured_servos++; last_send_us = now; configure_servos(); return; } last_send_us = now; delay_time_us = 0; // loop for all 16 channels for (uint8_t i=0; iget_output_pwm(); const uint16_t min = c->get_output_min(); const uint16_t max = c->get_output_max(); float v = float(pwm - min) / (max - min); uint32_t value = pos_min + v * (pos_max - pos_min); send_command(i+1, REG_GOAL_POSITION, value, 4); } } #endif //NUM_SERVO_CHANNELS