#include "Sub.h" /* * failsafe.cpp * Failsafe checks and actions */ static bool failsafe_enabled = false; static uint16_t failsafe_last_ticks; static uint32_t failsafe_last_timestamp; static bool in_failsafe; // Enable mainloop lockup failsafe void Sub::mainloop_failsafe_enable() { failsafe_enabled = true; failsafe_last_timestamp = AP_HAL::micros(); } // Disable mainloop lockup failsafe // Used when we know we are going to delay the mainloop significantly. void Sub::mainloop_failsafe_disable() { failsafe_enabled = false; } // This function is called from the core timer interrupt at 1kHz. // This checks that the mainloop is running, and has not locked up. void Sub::mainloop_failsafe_check() { uint32_t tnow = AP_HAL::micros(); const uint16_t ticks = scheduler.ticks(); if (ticks != failsafe_last_ticks) { // the main loop is running, all is OK failsafe_last_ticks = ticks; failsafe_last_timestamp = tnow; if (in_failsafe) { in_failsafe = false; AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_RESOLVED); } return; } if (!in_failsafe && failsafe_enabled && tnow - failsafe_last_timestamp > 2000000) { // motors are running but we have gone 2 second since the // main loop ran. That means we're in trouble and should // disarm the motors. in_failsafe = true; // reduce motors to minimum (we do not immediately disarm because we want to log the failure) if (motors.armed()) { motors.output_min(); } AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_OCCURRED); } if (failsafe_enabled && in_failsafe && tnow - failsafe_last_timestamp > 1000000) { // disarm motors every second failsafe_last_timestamp = tnow; if (motors.armed()) { motors.armed(false); motors.output(); } } } void Sub::failsafe_sensors_check() { if (!ap.depth_sensor_present) { return; } // We need a depth sensor to do any sort of auto z control if (sensor_health.depth) { if (failsafe.sensor_health) { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::ERROR_RESOLVED); failsafe.sensor_health = false; } return; } // only report once if (failsafe.sensor_health) { return; } failsafe.sensor_health = true; gcs().send_text(MAV_SEVERITY_CRITICAL, "Depth sensor error!"); AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::BAD_DEPTH); if (control_mode == ALT_HOLD || control_mode == SURFACE || mode_requires_GPS(control_mode)) { // This should always succeed if (!set_mode(MANUAL, MODE_REASON_BAD_DEPTH)) { // We should never get here init_disarm_motors(); } } } void Sub::failsafe_ekf_check() { static uint32_t last_ekf_good_ms = 0; if (g.fs_ekf_action == FS_EKF_ACTION_DISABLED) { last_ekf_good_ms = AP_HAL::millis(); failsafe.ekf = false; AP_Notify::flags.ekf_bad = false; return; } float posVar, hgtVar, tasVar; Vector3f magVar; Vector2f offset; float compass_variance; float vel_variance; ahrs.get_variances(vel_variance, posVar, hgtVar, magVar, tasVar, offset); compass_variance = magVar.length(); if (compass_variance < g.fs_ekf_thresh && vel_variance < g.fs_ekf_thresh) { last_ekf_good_ms = AP_HAL::millis(); failsafe.ekf = false; AP_Notify::flags.ekf_bad = false; return;; } // Bad EKF for 2 solid seconds triggers failsafe if (AP_HAL::millis() < last_ekf_good_ms + 2000) { failsafe.ekf = false; AP_Notify::flags.ekf_bad = false; return; } // Only trigger failsafe once if (failsafe.ekf) { return; } failsafe.ekf = true; AP_Notify::flags.ekf_bad = true; AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE); if (AP_HAL::millis() > failsafe.last_ekf_warn_ms + 20000) { failsafe.last_ekf_warn_ms = AP_HAL::millis(); gcs().send_text(MAV_SEVERITY_WARNING, "EKF bad"); } if (g.fs_ekf_action == FS_EKF_ACTION_DISARM) { init_disarm_motors(); } } // Battery failsafe handler void Sub::handle_battery_failsafe(const char* type_str, const int8_t action) { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_BATT, LogErrorCode::FAILSAFE_OCCURRED); switch((Failsafe_Action)action) { case Failsafe_Action_Surface: set_mode(SURFACE, MODE_REASON_BATTERY_FAILSAFE); break; case Failsafe_Action_Disarm: init_disarm_motors(); break; case Failsafe_Action_Warn: case Failsafe_Action_None: break; } } // Make sure that we are receiving pilot input at an appropriate interval void Sub::failsafe_pilot_input_check() { #if CONFIG_HAL_BOARD != HAL_BOARD_SITL if (g.failsafe_pilot_input == FS_PILOT_INPUT_DISABLED) { failsafe.pilot_input = false; return; } if (AP_HAL::millis() < failsafe.last_pilot_input_ms + g.failsafe_pilot_input_timeout * 1000.0f) { failsafe.pilot_input = false; // We've received an update from the pilot within the timeout period return; } if (failsafe.pilot_input) { return; // only act once } failsafe.pilot_input = true; AP::logger().Write_Error(LogErrorSubsystem::PILOT_INPUT, LogErrorCode::FAILSAFE_OCCURRED); gcs().send_text(MAV_SEVERITY_CRITICAL, "Lost manual control"); set_neutral_controls(); if(g.failsafe_pilot_input == FS_PILOT_INPUT_DISARM) { init_disarm_motors(); } #endif } // Internal pressure failsafe check // Check if the internal pressure of the watertight electronics enclosure // has exceeded the maximum specified by the FS_PRESS_MAX parameter void Sub::failsafe_internal_pressure_check() { if (g.failsafe_pressure == FS_PRESS_DISABLED) { return; // Nothing to do } uint32_t tnow = AP_HAL::millis(); static uint32_t last_pressure_warn_ms; static uint32_t last_pressure_good_ms; if (barometer.get_pressure(0) < g.failsafe_pressure_max) { last_pressure_good_ms = tnow; last_pressure_warn_ms = tnow; failsafe.internal_pressure = false; return; } // 2 seconds with no readings below threshold triggers failsafe if (tnow > last_pressure_good_ms + 2000) { failsafe.internal_pressure = true; } // Warn every 30 seconds if (failsafe.internal_pressure && tnow > last_pressure_warn_ms + 30000) { last_pressure_warn_ms = tnow; gcs().send_text(MAV_SEVERITY_WARNING, "Internal pressure critical!"); } } // Internal temperature failsafe check // Check if the internal temperature of the watertight electronics enclosure // has exceeded the maximum specified by the FS_TEMP_MAX parameter void Sub::failsafe_internal_temperature_check() { if (g.failsafe_temperature == FS_TEMP_DISABLED) { return; // Nothing to do } uint32_t tnow = AP_HAL::millis(); static uint32_t last_temperature_warn_ms; static uint32_t last_temperature_good_ms; if (barometer.get_temperature(0) < g.failsafe_temperature_max) { last_temperature_good_ms = tnow; last_temperature_warn_ms = tnow; failsafe.internal_temperature = false; return; } // 2 seconds with no readings below threshold triggers failsafe if (tnow > last_temperature_good_ms + 2000) { failsafe.internal_temperature = true; } // Warn every 30 seconds if (failsafe.internal_temperature && tnow > last_temperature_warn_ms + 30000) { last_temperature_warn_ms = tnow; gcs().send_text(MAV_SEVERITY_WARNING, "Internal temperature critical!"); } } // Check if we are leaking and perform appropriate action void Sub::failsafe_leak_check() { bool status = leak_detector.get_status(); // Do nothing if we are dry, or if leak failsafe action is disabled if (status == false || g.failsafe_leak == FS_LEAK_DISABLED) { if (failsafe.leak) { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_RESOLVED); } AP_Notify::flags.leak_detected = false; failsafe.leak = false; return; } AP_Notify::flags.leak_detected = status; uint32_t tnow = AP_HAL::millis(); // We have a leak // Always send a warning every 20 seconds if (tnow > failsafe.last_leak_warn_ms + 20000) { failsafe.last_leak_warn_ms = tnow; gcs().send_text(MAV_SEVERITY_CRITICAL, "Leak Detected"); } // Do nothing if we have already triggered the failsafe action, or if the motors are disarmed if (failsafe.leak) { return; } failsafe.leak = true; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_OCCURRED); // Handle failsafe action if (failsafe.leak && g.failsafe_leak == FS_LEAK_SURFACE && motors.armed()) { set_mode(SURFACE, MODE_REASON_LEAK_FAILSAFE); } } // failsafe_gcs_check - check for ground station failsafe void Sub::failsafe_gcs_check() { // return immediately if we have never had contact with a gcs, or if gcs failsafe action is disabled // this also checks to see if we have a GCS failsafe active, if we do, then must continue to process the logic for recovery from this state. if (failsafe.last_heartbeat_ms == 0 || (!g.failsafe_gcs && g.failsafe_gcs == FS_GCS_DISABLED)) { return; } uint32_t tnow = AP_HAL::millis(); // Check if we have gotten a GCS heartbeat recently (GCS sysid must match SYSID_MYGCS parameter) if (tnow - failsafe.last_heartbeat_ms < FS_GCS_TIMEOUT_MS) { // Log event if we are recovering from previous gcs failsafe if (failsafe.gcs) { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_RESOLVED); } failsafe.gcs = false; return; } ////////////////////////////// // GCS heartbeat has timed out ////////////////////////////// // Send a warning every 30 seconds if (tnow - failsafe.last_gcs_warn_ms > 30000) { failsafe.last_gcs_warn_ms = tnow; gcs().send_text(MAV_SEVERITY_WARNING, "MYGCS: %d, heartbeat lost", g.sysid_my_gcs); } // do nothing if we have already triggered the failsafe action, or if the motors are disarmed if (failsafe.gcs || !motors.armed()) { return; } failsafe.gcs = true; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_OCCURRED); // handle failsafe action if (g.failsafe_gcs == FS_GCS_DISARM) { init_disarm_motors(); } else if (g.failsafe_gcs == FS_GCS_HOLD && motors.armed()) { if (!set_mode(ALT_HOLD, MODE_REASON_GCS_FAILSAFE)) { init_disarm_motors(); } } else if (g.failsafe_gcs == FS_GCS_SURFACE && motors.armed()) { if (!set_mode(SURFACE, MODE_REASON_GCS_FAILSAFE)) { init_disarm_motors(); } } } #define CRASH_CHECK_TRIGGER_MS 2000 // 2 seconds inverted indicates a crash #define CRASH_CHECK_ANGLE_DEVIATION_DEG 30.0f // 30 degrees beyond angle max is signal we are inverted // Check for a crash // The vehicle is considered crashed if the angle error exceeds a specified limit for more than 2 seconds void Sub::failsafe_crash_check() { static uint32_t last_crash_check_pass_ms; uint32_t tnow = AP_HAL::millis(); // return immediately if disarmed, or crash checking disabled if (!motors.armed() || g.fs_crash_check == FS_CRASH_DISABLED) { last_crash_check_pass_ms = tnow; failsafe.crash = false; return; } // return immediately if we are not in an angle stabilized flight mode if (control_mode == ACRO || control_mode == MANUAL) { last_crash_check_pass_ms = tnow; failsafe.crash = false; return; } // check for angle error over 30 degrees const float angle_error = attitude_control.get_att_error_angle_deg(); if (angle_error <= CRASH_CHECK_ANGLE_DEVIATION_DEG) { last_crash_check_pass_ms = tnow; failsafe.crash = false; return; } if (tnow < last_crash_check_pass_ms + CRASH_CHECK_TRIGGER_MS) { return; } // Conditions met, we are in failsafe // Send warning to GCS if (tnow > failsafe.last_crash_warn_ms + 20000) { failsafe.last_crash_warn_ms = tnow; gcs().send_text(MAV_SEVERITY_WARNING,"Crash detected"); } // Only perform failsafe action once if (failsafe.crash) { return; } failsafe.crash = true; AP::logger().Write_Error(LogErrorSubsystem::CRASH_CHECK, LogErrorCode::CRASH_CHECK_CRASH); // disarm motors if (g.fs_crash_check == FS_CRASH_DISARM) { init_disarm_motors(); } } // executes terrain failsafe if data is missing for longer than a few seconds // missing_data should be set to true if the vehicle failed to navigate because of missing data, false if navigation is proceeding successfully void Sub::failsafe_terrain_check() { // trigger with 5 seconds of failures while in AUTO mode bool valid_mode = (control_mode == AUTO || control_mode == GUIDED); bool timeout = (failsafe.terrain_last_failure_ms - failsafe.terrain_first_failure_ms) > FS_TERRAIN_TIMEOUT_MS; bool trigger_event = valid_mode && timeout; // check for clearing of event if (trigger_event != failsafe.terrain) { if (trigger_event) { gcs().send_text(MAV_SEVERITY_CRITICAL,"Failsafe terrain triggered"); failsafe_terrain_on_event(); } else { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::ERROR_RESOLVED); failsafe.terrain = false; } } } // This gets called if mission items are in ALT_ABOVE_TERRAIN frame // Terrain failure occurs when terrain data is not found, or rangefinder is not enabled or healthy // set terrain data status (found or not found) void Sub::failsafe_terrain_set_status(bool data_ok) { uint32_t now = AP_HAL::millis(); // record time of first and latest failures (i.e. duration of failures) if (!data_ok) { failsafe.terrain_last_failure_ms = now; if (failsafe.terrain_first_failure_ms == 0) { failsafe.terrain_first_failure_ms = now; } } else { // failures cleared after 0.1 seconds of persistent successes if (now - failsafe.terrain_last_failure_ms > 100) { failsafe.terrain_last_failure_ms = 0; failsafe.terrain_first_failure_ms = 0; } } } // terrain failsafe action void Sub::failsafe_terrain_on_event() { failsafe.terrain = true; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::FAILSAFE_OCCURRED); // If rangefinder is enabled, we can recover from this failsafe if (!rangefinder_state.enabled || !auto_terrain_recover_start()) { failsafe_terrain_act(); } } // Recovery failed, take action void Sub::failsafe_terrain_act() { switch (g.failsafe_terrain) { case FS_TERRAIN_HOLD: if (!set_mode(POSHOLD, MODE_REASON_TERRAIN_FAILSAFE)) { set_mode(ALT_HOLD, MODE_REASON_TERRAIN_FAILSAFE); } AP_Notify::events.failsafe_mode_change = 1; break; case FS_TERRAIN_SURFACE: set_mode(SURFACE, MODE_REASON_TERRAIN_FAILSAFE); AP_Notify::events.failsafe_mode_change = 1; break; case FS_TERRAIN_DISARM: default: init_disarm_motors(); } }