/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_WindVane_config.h" #if AP_WINDVANE_ENABLED #include "AP_WindVane.h" #include "AP_WindVane_Home.h" #include "AP_WindVane_Analog.h" #include "AP_WindVane_ModernDevice.h" #include "AP_WindVane_Airspeed.h" #include "AP_WindVane_RPM.h" #include "AP_WindVane_SITL.h" #include "AP_WindVane_NMEA.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_WindVane::var_info[] = { // @Param: TYPE // @DisplayName: Wind Vane Type // @Description: Wind Vane type // @Values: 0:None,1:Heading when armed,2:RC input offset heading when armed,3:Analog,4:NMEA,10:SITL true,11:SITL apparent // @User: Standard // @RebootRequired: True AP_GROUPINFO_FLAGS("TYPE", 1, AP_WindVane, _direction_type, 0, AP_PARAM_FLAG_ENABLE), // 2 was RC_IN_NO // @Param: DIR_PIN // @DisplayName: Wind vane analog voltage pin for direction // @Description: Analog input pin to read as wind vane direction // @Values: 11:Pixracer,13:Pixhawk ADC4,14:Pixhawk ADC3,15:Pixhawk ADC6/Pixhawk2 ADC,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6,103:Pixhawk SBUS // @User: Standard AP_GROUPINFO("DIR_PIN", 3, AP_WindVane, _dir_analog_pin, WINDVANE_DEFAULT_PIN), // @Param: DIR_V_MIN // @DisplayName: Wind vane voltage minimum // @Description: Minimum voltage supplied by analog wind vane. When using pin 103, the maximum value of the parameter is 3.3V. // @Units: V // @Increment: 0.01 // @Range: 0 5.0 // @User: Standard AP_GROUPINFO("DIR_V_MIN", 4, AP_WindVane, _dir_analog_volt_min, 0.0f), // @Param: DIR_V_MAX // @DisplayName: Wind vane voltage maximum // @Description: Maximum voltage supplied by analog wind vane. When using pin 103, the maximum value of the parameter is 3.3V. // @Units: V // @Increment: 0.01 // @Range: 0 5.0 // @User: Standard AP_GROUPINFO("DIR_V_MAX", 5, AP_WindVane, _dir_analog_volt_max, 3.3f), // @Param: DIR_OFS // @DisplayName: Wind vane headwind offset // @Description: Angle offset when analog windvane is indicating a headwind, ie 0 degress relative to vehicle // @Units: deg // @Increment: 1 // @Range: 0 360 // @User: Standard AP_GROUPINFO("DIR_OFS", 6, AP_WindVane, _dir_analog_bearing_offset, 0.0f), // @Param: DIR_FILT // @DisplayName: apparent Wind vane direction low pass filter frequency // @Description: apparent Wind vane direction low pass filter frequency, a value of -1 disables filter // @Units: Hz // @User: Standard AP_GROUPINFO("DIR_FILT", 7, AP_WindVane, _dir_filt_hz, 0.5f), // @Param: CAL // @DisplayName: Wind vane calibration start // @Description: Start wind vane calibration by setting this to 1 or 2 // @Values: 0:None, 1:Calibrate direction, 2:Calibrate speed // @User: Standard AP_GROUPINFO("CAL", 8, AP_WindVane, _calibration, 0), // @Param: DIR_DZ // @DisplayName: Wind vane deadzone when using analog sensor // @Description: Wind vane deadzone when using analog sensor // @Units: deg // @Increment: 1 // @Range: 0 360 // @User: Standard AP_GROUPINFO("DIR_DZ", 9, AP_WindVane, _dir_analog_deadzone, 0), // @Param: SPEED_MIN // @DisplayName: Wind vane cut off wind speed // @Description: Wind vane direction will be ignored when apparent wind speeds are below this value (if wind speed sensor is present). If the apparent wind is consistently below this value the vane will not work // @Units: m/s // @Increment: 0.1 // @Range: 0 5 // @User: Standard AP_GROUPINFO("SPEED_MIN", 10, AP_WindVane, _dir_speed_cutoff, 0), // @Param: SPEED_TYPE // @DisplayName: Wind speed sensor Type // @Description: Wind speed sensor type // @Values: 0:None,1:Airspeed library,2:Modern Devices Wind Sensor,3:RPM library,4:NMEA,10:SITL true,11:SITL apparent // @User: Standard // @RebootRequired: True AP_GROUPINFO("SPEED_TYPE", 11, AP_WindVane, _speed_sensor_type, 0), // @Param: SPEED_PIN // @DisplayName: Wind vane speed sensor analog pin // @Description: Wind speed analog speed input pin for Modern Devices Wind Sensor rev. p // @Values: 11:Pixracer,13:Pixhawk ADC4,14:Pixhawk ADC3,15:Pixhawk ADC6/Pixhawk2 ADC,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6,103:Pixhawk SBUS // @User: Standard AP_GROUPINFO("SPEED_PIN", 12, AP_WindVane, _speed_sensor_speed_pin, WINDSPEED_DEFAULT_SPEED_PIN), // @Param: TEMP_PIN // @DisplayName: Wind vane speed sensor analog temp pin // @Description: Wind speed sensor analog temp input pin for Modern Devices Wind Sensor rev. p, set to -1 to diasble temp readings // @Values: 11:Pixracer,13:Pixhawk ADC4,14:Pixhawk ADC3,15:Pixhawk ADC6/Pixhawk2 ADC,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6,103:Pixhawk SBUS // @User: Standard AP_GROUPINFO("TEMP_PIN", 13, AP_WindVane, _speed_sensor_temp_pin, WINDSPEED_DEFAULT_TEMP_PIN), // @Param: SPEED_OFS // @DisplayName: Wind speed sensor analog voltage offset // @Description: Wind sensor analog voltage offset at zero wind speed // @Units: V // @Increment: 0.01 // @Range: 0 3.3 // @User: Standard AP_GROUPINFO("SPEED_OFS", 14, AP_WindVane, _speed_sensor_voltage_offset, WINDSPEED_DEFAULT_VOLT_OFFSET), // @Param: SPEED_FILT // @DisplayName: apparent wind speed low pass filter frequency // @Description: apparent Wind speed low pass filter frequency, a value of -1 disables filter // @Units: Hz // @User: Standard AP_GROUPINFO("SPEED_FILT", 15, AP_WindVane, _speed_filt_hz, 0.5f), // @Param: TRUE_FILT // @DisplayName: True speed and direction low pass filter frequency // @Description: True speed and direction low pass filter frequency, a value of -1 disables filter // @Units: Hz // @User: Standard AP_GROUPINFO("TRUE_FILT", 16, AP_WindVane, _true_filt_hz, 0.05f), AP_GROUPEND }; // constructor AP_WindVane::AP_WindVane() { AP_Param::setup_object_defaults(this, var_info); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton) { AP_HAL::panic("Too many Wind Vane sensors"); } #endif _singleton = this; } /* * Get the AP_WindVane singleton */ AP_WindVane *AP_WindVane::get_singleton() { return _singleton; } // return true if wind vane is enabled bool AP_WindVane::enabled() const { return _direction_type != WINDVANE_NONE; } // return true if wind speed is enabled bool AP_WindVane::wind_speed_enabled() const { return (_speed_sensor_type != WINDSPEED_NONE); } // Initialize the Wind Vane object and prepare it for use void AP_WindVane::init(const AP_SerialManager& serial_manager) { // don't construct twice if (_direction_driver != nullptr || _speed_driver != nullptr ) { return; } // wind direction switch (_direction_type) { case WindVaneType::WINDVANE_NONE: // WindVane disabled return; #if AP_WINDVANE_HOME_ENABLED case WindVaneType::WINDVANE_HOME_HEADING: case WindVaneType::WINDVANE_PWM_PIN: _direction_driver = NEW_NOTHROW AP_WindVane_Home(*this); break; #endif #if AP_WINDVANE_ANALOG_ENABLED case WindVaneType::WINDVANE_ANALOG_PIN: _direction_driver = NEW_NOTHROW AP_WindVane_Analog(*this); break; #endif #if AP_WINDVANE_SIM_ENABLED case WindVaneType::WINDVANE_SITL_TRUE: case WindVaneType::WINDVANE_SITL_APPARENT: _direction_driver = NEW_NOTHROW AP_WindVane_SITL(*this); break; #endif #if AP_WINDVANE_NMEA_ENABLED case WindVaneType::WINDVANE_NMEA: _direction_driver = NEW_NOTHROW AP_WindVane_NMEA(*this); _direction_driver->init(serial_manager); break; #endif } // wind speed switch (_speed_sensor_type) { case Speed_type::WINDSPEED_NONE: break; #if AP_WINDVANE_AIRSPEED_ENABLED case Speed_type::WINDSPEED_AIRSPEED: _speed_driver = NEW_NOTHROW AP_WindVane_Airspeed(*this); break; #endif #if AP_WINDVANE_MODERNDEVICE_ENABLED case Speed_type::WINDVANE_WIND_SENSOR_REV_P: _speed_driver = NEW_NOTHROW AP_WindVane_ModernDevice(*this); break; #endif #if AP_WINDVANE_SIM_ENABLED case Speed_type::WINDSPEED_SITL_TRUE: case Speed_type::WINDSPEED_SITL_APPARENT: // single driver does both speed and direction if (_direction_type != _speed_sensor_type) { _speed_driver = NEW_NOTHROW AP_WindVane_SITL(*this); } else { _speed_driver = _direction_driver; } break; #endif // AP_WINDVANE_SIM_ENABLED #if AP_WINDVANE_NMEA_ENABLED case Speed_type::WINDSPEED_NMEA: // single driver does both speed and direction if (_direction_type != WindVaneType::WINDVANE_NMEA) { _speed_driver = NEW_NOTHROW AP_WindVane_NMEA(*this); _speed_driver->init(serial_manager); } else { _speed_driver = _direction_driver; } break; #endif // AP_WINDVANE_NMEA_ENABLED #if AP_WINDVANE_RPM_ENABLED case Speed_type::WINDSPEED_RPM: _speed_driver = NEW_NOTHROW AP_WindVane_RPM(*this); break; #endif } } // update wind vane, expected to be called at 20hz void AP_WindVane::update() { const bool have_speed = _speed_driver != nullptr; const bool have_direction = _direction_driver != nullptr; // exit immediately if not enabled if (!enabled() || (!have_speed && !have_direction)) { return; } // calibrate if booted and disarmed if (!hal.util->get_soft_armed()) { if (_calibration == 1 && have_direction) { _direction_driver->calibrate(); } else if (_calibration == 2 && have_speed) { _speed_driver->calibrate(); } else if (_calibration != 0) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "WindVane: driver not found"); _calibration.set_and_save(0); } } else if (_calibration != 0) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "WindVane: disarm for cal"); _calibration.set_and_save(0); } // read apparent wind speed if (have_speed) { _speed_driver->update_speed(); } // read apparent wind direction if (have_direction) { _direction_driver->update_direction(); } if (have_speed && have_direction) { if (_speed_apparent >= _dir_speed_cutoff) { // calculate true wind speed and direction from apparent wind update_true_wind_speed_and_direction(); } else { // assume true wind has not changed, calculate the apparent wind direction and speed update_apparent_wind_dir_from_true(); } } else { // only have direction, can't do true wind calcs, set true direction to apparent + heading _direction_true_raw = wrap_PI(_direction_apparent_raw + AP::ahrs().get_yaw()); _speed_true_raw = 0.0f; } /* Apply filters https://en.wikipedia.org/wiki/Mean_of_circular_quantities */ float filtered_sin; float filtered_cos; // apparent speed if (is_positive(_speed_filt_hz)) { _speed_apparent_filt.set_cutoff_frequency(_speed_filt_hz); _speed_apparent = _speed_apparent_filt.apply(_speed_apparent_raw,0.05f); } else { _speed_apparent = _speed_apparent_raw; } // apparent direction if (is_positive(_dir_filt_hz)) { _direction_apparent_sin_filt.set_cutoff_frequency(_dir_filt_hz); _direction_apparent_cos_filt.set_cutoff_frequency(_dir_filt_hz); filtered_sin = _direction_apparent_sin_filt.apply(sinf(_direction_apparent_raw),0.05f); filtered_cos = _direction_apparent_cos_filt.apply(cosf(_direction_apparent_raw),0.05f); _direction_apparent = atan2f(filtered_sin, filtered_cos); } else { _direction_apparent = _direction_apparent_raw; } // apparent direction for tack threshold, hard coded freq filtered_sin = _tack_sin_filt.apply(sinf(_direction_apparent_raw),0.05f); filtered_cos = _tack_cos_filt.apply(cosf(_direction_apparent_raw),0.05f); _direction_tack = atan2f(filtered_sin, filtered_cos); _current_tack = is_negative(_direction_tack) ? Sailboat_Tack::TACK_PORT : Sailboat_Tack::TACK_STARBOARD; // true wind direction and speed, both at the same freq if (is_positive(_true_filt_hz)) { _speed_true_filt.set_cutoff_frequency(_true_filt_hz); _direction_true_sin_filt.set_cutoff_frequency(_true_filt_hz); _direction_true_cos_filt.set_cutoff_frequency(_true_filt_hz); _speed_true = _speed_true_filt.apply(_speed_true_raw,0.05f); filtered_sin = _direction_true_sin_filt.apply(sinf(_direction_true_raw),0.05f); filtered_cos = _direction_true_cos_filt.apply(cosf(_direction_true_raw),0.05f); _direction_true = atan2f(filtered_sin, filtered_cos); } else { _speed_true = _speed_true_raw; _direction_true = _direction_true_raw; } #if HAL_LOGGING_ENABLED // @LoggerMessage: WIND // @Description: Windvane readings // @Field: TimeUS: Time since system startup // @Field: DrRaw: raw apparent wind direction direct from sensor, in body-frame // @Field: DrApp: Apparent wind direction, in body-frame // @Field: DrTru: True wind direction // @Field: SpdRaw: raw wind speed direct from sensor // @Field: SpdApp: Apparent wind Speed // @Field: SpdTru: True wind speed AP::logger().WriteStreaming("WIND", "TimeUS,DrRaw,DrApp,DrTru,SpdRaw,SpdApp,SpdTru", "sddhnnn", "F000000", "Qffffff", AP_HAL::micros64(), degrees(_direction_apparent_raw), degrees(_direction_apparent), degrees(_direction_true), _speed_apparent_raw, _speed_apparent, _speed_true); #endif } void AP_WindVane::record_home_heading() { _home_heading = AP::ahrs().get_yaw(); } // to start direction calibration from mavlink or other bool AP_WindVane::start_direction_calibration() { if (enabled() && (_calibration == 0)) { _calibration.set(1); return true; } return false; } // to start speed calibration from mavlink or other bool AP_WindVane::start_speed_calibration() { if (enabled() && (_calibration == 0)) { _calibration.set(2); return true; } return false; } // send mavlink wind message void AP_WindVane::send_wind(mavlink_channel_t chan) const { // exit immediately if not enabled if (!enabled()) { return; } // send wind mavlink_msg_wind_send( chan, wrap_360(degrees(get_true_wind_direction_rad())), get_true_wind_speed(), 0); // send apparent wind using named floats // TODO: create a dedicated MAVLink message gcs().send_named_float("AppWndSpd", get_apparent_wind_speed()); gcs().send_named_float("AppWndDir", degrees(get_apparent_wind_direction_rad())); } // calculate true wind speed and direction from apparent wind // https://en.wikipedia.org/wiki/Apparent_wind void AP_WindVane::update_true_wind_speed_and_direction() { // if no vehicle speed, can't do calcs Vector3f veh_velocity; if (!AP::ahrs().get_velocity_NED(veh_velocity)) { // if no vehicle speed use apparent speed and direction directly _direction_true_raw = _direction_apparent_raw; _speed_true_raw = _speed_apparent; return; } // convert apparent wind speed and direction to 2D vector in same frame as vehicle velocity const float wind_dir_180 = _direction_apparent_raw + AP::ahrs().get_yaw() + radians(180); const Vector2f wind_apparent_vec(cosf(wind_dir_180) * _speed_apparent, sinf(wind_dir_180) * _speed_apparent); // add vehicle velocity Vector2f wind_true_vec = Vector2f(wind_apparent_vec.x + veh_velocity.x, wind_apparent_vec.y + veh_velocity.y); // calculate true speed and direction _direction_true_raw = wrap_PI(atan2f(wind_true_vec.y, wind_true_vec.x) - radians(180)); _speed_true_raw = wind_true_vec.length(); } // apparent wind is low, can't trust sensors, assume true wind has not changed and calculate apparent wind void AP_WindVane::update_apparent_wind_dir_from_true() { // if no vehicle speed, can't do calcs Vector3f veh_velocity; if (!AP::ahrs().get_velocity_NED(veh_velocity)) { return; } // convert true wind speed and direction to 2D vector in same frame as vehicle velocity const float wind_dir_180 = _direction_true + radians(180); const Vector2f wind_true_vec(cosf(wind_dir_180) * _speed_true, sinf(wind_dir_180) * _speed_true); // add vehicle velocity Vector2f wind_apparent_vec = Vector2f(wind_true_vec.x - veh_velocity.x, wind_true_vec.y - veh_velocity.y); // calculate apartment speed and direction _direction_apparent_raw = wrap_PI(atan2f(wind_apparent_vec.y, wind_apparent_vec.x) - radians(180) - AP::ahrs().get_yaw()); _speed_apparent_raw = wind_apparent_vec.length(); } AP_WindVane *AP_WindVane::_singleton = nullptr; namespace AP { AP_WindVane *windvane() { return AP_WindVane::get_singleton(); } }; #endif // AP_WINDVANE_ENABLED