#include "AC_AutoTune.h" #include #include /* * autotune support for multicopters * * Instructions: * 1) Set up one flight mode switch position to be AltHold. * 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch. * 3) Ensure the ch7 or ch8 switch is in the LOW position. * 4) Wait for a calm day and go to a large open area. * 5) Take off and put the vehicle into AltHold mode at a comfortable altitude. * 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning: * a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back. * b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests). * When you release the sticks it will continue auto tuning where it left off. * c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs. * d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered. * 7) When the tune completes the vehicle will change back to the original PID gains. * 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains. * 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains. * 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently. * If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm * * What it's doing during each "twitch": * a) invokes 90 deg/sec rate request * b) records maximum "forward" roll rate and bounce back rate * c) when copter reaches 20 degrees or 1 second has passed, it commands level * d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P * e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec) * f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec) * g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec) * h) invokes a 20deg angle request on roll or pitch * i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg) * j) decreases stab P by 25% * */ #define AUTOTUNE_AXIS_BITMASK_ROLL 1 #define AUTOTUNE_AXIS_BITMASK_PITCH 2 #define AUTOTUNE_AXIS_BITMASK_YAW 4 #define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds #define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 1000U // timeout for tuning mode's testing step #define AUTOTUNE_LEVEL_ANGLE_CD 500 // angle which qualifies as level #define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch #define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw #define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level #define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level #define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing #define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing #define AUTOTUNE_RD_MAX 0.200f // maximum Rate D value #define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value #define AUTOTUNE_RLPF_MAX 5.0f // maximum Rate Yaw filter value #define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value #define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value #define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value #define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value #define AUTOTUNE_RP_ACCEL_MIN 4000.0f // Minimum acceleration for Roll and Pitch #define AUTOTUNE_Y_ACCEL_MIN 1000.0f // Minimum acceleration for Yaw #define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw #define AUTOTUNE_SUCCESS_COUNT 4 // The number of successful iterations we need to freeze at current gains #define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in #define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning #define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning #define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning #define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration #define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration // roll and pitch axes #define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step // yaw axis #define AUTOTUNE_TARGET_ANGLE_YAW_CD 3000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step // Auto Tune message ids for ground station #define AUTOTUNE_MESSAGE_STARTED 0 #define AUTOTUNE_MESSAGE_STOPPED 1 #define AUTOTUNE_MESSAGE_SUCCESS 2 #define AUTOTUNE_MESSAGE_FAILED 3 #define AUTOTUNE_MESSAGE_SAVED_GAINS 4 #define AUTOTUNE_MESSAGE_TESTING 5 #define AUTOTUNE_ANNOUNCE_INTERVAL_MS 2000 // second table of user settable parameters for quadplanes, this // allows us to go beyond the 64 parameter limit const AP_Param::GroupInfo AC_AutoTune::var_info[] = { // @Param: AXES // @DisplayName: Autotune axis bitmask // @Description: 1-byte bitmap of axes to autotune // @Values: 7:All,1:Roll Only,2:Pitch Only,4:Yaw Only,3:Roll and Pitch,5:Roll and Yaw,6:Pitch and Yaw // @Bitmask: 0:Roll,1:Pitch,2:Yaw // @User: Standard AP_GROUPINFO("AXES", 1, AC_AutoTune, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT // @Param: AGGR // @DisplayName: Autotune aggressiveness // @Description: Autotune aggressiveness. Defines the bounce back used to detect size of the D term. // @Range: 0.05 0.10 // @User: Standard AP_GROUPINFO("AGGR", 2, AC_AutoTune, aggressiveness, 0.1f), // @Param: MIN_D // @DisplayName: AutoTune minimum D // @Description: Defines the minimum D gain // @Range: 0.001 0.006 // @User: Standard AP_GROUPINFO("MIN_D", 3, AC_AutoTune, min_d, 0.001f), AP_GROUPEND }; AC_AutoTune::AC_AutoTune() { AP_Param::setup_object_defaults(this, var_info); } // autotune_init - should be called when autotune mode is selected bool AC_AutoTune::init_internals(bool _use_poshold, AC_AttitudeControl_Multi *_attitude_control, AC_PosControl *_pos_control, AP_AHRS_View *_ahrs_view, AP_InertialNav *_inertial_nav) { bool success = true; use_poshold = _use_poshold; attitude_control = _attitude_control; pos_control = _pos_control; ahrs_view = _ahrs_view; inertial_nav = _inertial_nav; motors = AP_Motors::get_singleton(); switch (mode) { case FAILED: // autotune has been run but failed so reset state to uninitialized mode = UNINITIALISED; // fall through to restart the tuning FALLTHROUGH; case UNINITIALISED: // autotune has never been run success = start(); if (success) { // so store current gains as original gains backup_gains_and_initialise(); // advance mode to tuning mode = TUNING; // send message to ground station that we've started tuning update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case TUNING: // we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off success = start(); if (success) { // reset gains to tuning-start gains (i.e. low I term) load_gains(GAIN_INTRA_TEST); AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART); update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case SUCCESS: // we have completed a tune and the pilot wishes to test the new gains in the current flight mode // so simply apply tuning gains (i.e. do not change flight mode) load_gains(GAIN_TUNED); update_gcs(AUTOTUNE_MESSAGE_TESTING); AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING); break; } have_position = false; return success; } // stop - should be called when the ch7/ch8 switch is switched OFF void AC_AutoTune::stop() { // set gains to their original values load_gains(GAIN_ORIGINAL); // re-enable angle-to-rate request limits attitude_control->use_sqrt_controller(true); update_gcs(AUTOTUNE_MESSAGE_STOPPED); AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF); // Note: we leave the mode as it was so that we know how the autotune ended // we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch } // start - Initialize autotune flight mode bool AC_AutoTune::start(void) { if (!motors->armed()) { return false; } // initialize vertical speeds and leash lengths init_z_limits(); // initialise position and desired velocity if (!pos_control->is_active_z()) { pos_control->set_alt_target_to_current_alt(); pos_control->set_desired_velocity_z(inertial_nav->get_velocity_z()); } return true; } const char *AC_AutoTune::level_issue_string() const { switch (level_problem.issue) { case LevelIssue::NONE: return "None"; case LevelIssue::ANGLE_ROLL: return "Angle(R)"; case LevelIssue::ANGLE_PITCH: return "Angle(P)"; case LevelIssue::ANGLE_YAW: return "Angle(Y)"; case LevelIssue::RATE_ROLL: return "Rate(R)"; case LevelIssue::RATE_PITCH: return "Rate(P)"; case LevelIssue::RATE_YAW: return "Rate(Y)"; } return "Bug"; } void AC_AutoTune::send_step_string() { if (pilot_override) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Paused: Pilot Override Active"); return; } switch (step) { case WAITING_FOR_LEVEL: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: WFL (%s) (%f > %f)", level_issue_string(), (double)(level_problem.current*0.01f), (double)(level_problem.maximum*0.01f)); return; case UPDATE_GAINS: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: UPDATING_GAINS"); return; case TWITCHING: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: TWITCHING"); return; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: unknown step"); } const char *AC_AutoTune::type_string() const { switch (tune_type) { case RD_UP: return "Rate D Up"; case RD_DOWN: return "Rate D Down"; case RP_UP: return "Rate P Up"; case SP_DOWN: return "Angle P Down"; case SP_UP: return "Angle P Up"; } return "Bug"; } void AC_AutoTune::do_gcs_announcements() { const uint32_t now = AP_HAL::millis(); if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) { return; } float tune_rp = 0.0f; float tune_rd = 0.0f; float tune_sp = 0.0f; float tune_accel = 0.0f; char axis_char = '?'; switch (axis) { case ROLL: tune_rp = tune_roll_rp; tune_rd = tune_roll_rd; tune_sp = tune_roll_sp; tune_accel = tune_roll_accel; axis_char = 'R'; break; case PITCH: tune_rp = tune_pitch_rp; tune_rd = tune_pitch_rd; tune_sp = tune_pitch_sp; tune_accel = tune_pitch_accel; axis_char = 'P'; break; case YAW: tune_rp = tune_yaw_rp; tune_rd = tune_yaw_rLPF; tune_sp = tune_yaw_sp; tune_accel = tune_yaw_accel; axis_char = 'Y'; break; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string()); send_step_string(); if (!is_zero(lean_angle)) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: lean=%f target=%f", (double)lean_angle, (double)target_angle); } if (!is_zero(rotation_rate)) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rotation=%f target=%f", (double)(rotation_rate*0.01f), (double)(target_rate*0.01f)); } switch (tune_type) { case RD_UP: case RD_DOWN: case RP_UP: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd); break; case SP_DOWN: case SP_UP: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel); break; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT); announce_time = now; } // run - runs the autotune flight mode // should be called at 100hz or more void AC_AutoTune::run() { // initialize vertical speeds and acceleration init_z_limits(); // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately // this should not actually be possible because of the init() checks if (!motors->armed() || !motors->get_interlock()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0.0f, true, 0.0f); pos_control->relax_alt_hold_controllers(0.0f); return; } float target_roll_cd, target_pitch_cd, target_yaw_rate_cds; get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); // get pilot desired climb rate const float target_climb_rate_cms = get_pilot_desired_climb_rate_cms(); const bool zero_rp_input = is_zero(target_roll_cd) && is_zero(target_pitch_cd); const uint32_t now = AP_HAL::millis(); if (!zero_rp_input || !is_zero(target_yaw_rate_cds) || !is_zero(target_climb_rate_cms)) { if (!pilot_override) { pilot_override = true; // set gains to their original values load_gains(GAIN_ORIGINAL); attitude_control->use_sqrt_controller(true); } // reset pilot override time override_time = now; if (!zero_rp_input) { // only reset position on roll or pitch input have_position = false; } } else if (pilot_override) { // check if we should resume tuning after pilot's override if (now - override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) { pilot_override = false; // turn off pilot override // set gains to their intra-test values (which are very close to the original gains) // load_gains(GAIN_INTRA_TEST); //I think we should be keeping the originals here to let the I term settle quickly step = WAITING_FOR_LEVEL; // set tuning step back from beginning step_start_time_ms = now; level_start_time_ms = now; desired_yaw_cd = ahrs_view->yaw_sensor; } } if (pilot_override) { if (now - last_pilot_override_warning > 1000) { gcs().send_text(MAV_SEVERITY_INFO, "AUTOTUNE: pilot overrides active"); last_pilot_override_warning = now; } } if (zero_rp_input) { // pilot input on throttle and yaw will still use position hold if enabled get_poshold_attitude(target_roll_cd, target_pitch_cd, desired_yaw_cd); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // if pilot override call attitude controller if (pilot_override || mode != TUNING) { attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); } else { // somehow get attitude requests from autotuning control_attitude(); // tell the user what's going on do_gcs_announcements(); } // call position controller pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate_cms, AP::scheduler().get_last_loop_time_s(), false); pos_control->update_z_controller(); } bool AC_AutoTune::check_level(const LevelIssue issue, const float current, const float maximum) { if (current > maximum) { level_problem.current = current; level_problem.maximum = maximum; level_problem.issue = issue; return false; } return true; } bool AC_AutoTune::currently_level() { float threshold_mul = 1.0; if (AP_HAL::millis() - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) { // after a long wait we use looser threshold, to allow tuning // with poor initial gains threshold_mul *= 2; } if (!check_level(LevelIssue::ANGLE_ROLL, fabsf(ahrs_view->roll_sensor - roll_cd), threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { return false; } if (!check_level(LevelIssue::ANGLE_PITCH, fabsf(ahrs_view->pitch_sensor - pitch_cd), threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { return false; } if (!check_level(LevelIssue::ANGLE_YAW, fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)), threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { return false; } if (!check_level(LevelIssue::RATE_ROLL, (ToDeg(ahrs_view->get_gyro().x) * 100.0f), threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) { return false; } if (!check_level(LevelIssue::RATE_PITCH, (ToDeg(ahrs_view->get_gyro().y) * 100.0f), threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) { return false; } if (!check_level(LevelIssue::RATE_YAW, (ToDeg(ahrs_view->get_gyro().z) * 100.0f), threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD)) { return false; } return true; } // attitude_controller - sets attitude control targets during tuning void AC_AutoTune::control_attitude() { rotation_rate = 0.0f; // rotation rate in radians/second lean_angle = 0.0f; const float direction_sign = positive_direction ? 1.0f : -1.0f; const uint32_t now = AP_HAL::millis(); // check tuning step switch (step) { case WAITING_FOR_LEVEL: { // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // re-enable rate limits attitude_control->use_sqrt_controller(true); get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd); // hold level attitude attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true); // hold the copter level for 0.5 seconds before we begin a twitch // reset counter if we are no longer level if (!currently_level()) { step_start_time_ms = now; } // if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step if (now - step_start_time_ms > AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Twitch"); // initiate variables for next step step = TWITCHING; step_start_time_ms = now; step_time_limit_ms = AUTOTUNE_TESTING_STEP_TIMEOUT_MS; twitch_first_iter = true; test_rate_max = 0.0f; test_rate_min = 0.0f; test_angle_max = 0.0f; test_angle_min = 0.0f; rotation_rate_filt.reset(0.0f); rate_max = 0.0f; // set gains to their to-be-tested values load_gains(GAIN_TWITCH); } else { // when waiting for level we use the intra-test gains load_gains(GAIN_INTRA_TEST); } float target_max_rate; switch (axis) { case ROLL: target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; start_rate = ToDeg(ahrs_view->get_gyro().x) * 100.0f; start_angle = ahrs_view->roll_sensor; rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f); break; case PITCH: target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; start_rate = ToDeg(ahrs_view->get_gyro().y) * 100.0f; start_angle = ahrs_view->pitch_sensor; rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f); break; case YAW: target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS); target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate); target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD); abort_angle = AUTOTUNE_TARGET_ANGLE_YAW_CD; start_rate = ToDeg(ahrs_view->get_gyro().z) * 100.0f; start_angle = ahrs_view->yaw_sensor; rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ); break; } if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { rotation_rate_filt.reset(start_rate); } else { rotation_rate_filt.reset(0); } break; } case TWITCHING: { // Run the twitching step load_gains(GAIN_TWITCH); // disable rate limits attitude_control->use_sqrt_controller(false); // hold current attitude attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { // step angle targets on first iteration if (twitch_first_iter) { twitch_first_iter = false; // Testing increasing stabilize P gain so will set lean angle target switch (axis) { case ROLL: // request roll to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(direction_sign * target_angle, 0.0f, 0.0f); break; case PITCH: // request pitch to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, direction_sign * target_angle, 0.0f); break; case YAW: // request pitch to 20deg attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, direction_sign * target_angle); break; } } } else { // Testing rate P and D gains so will set body-frame rate targets. // Rate controller will use existing body-frame rates and convert to motor outputs // for all axes except the one we override here. switch (axis) { case ROLL: // override body-frame roll rate attitude_control->rate_bf_roll_target(direction_sign * target_rate + start_rate); break; case PITCH: // override body-frame pitch rate attitude_control->rate_bf_pitch_target(direction_sign * target_rate + start_rate); break; case YAW: // override body-frame yaw rate attitude_control->rate_bf_yaw_target(direction_sign * target_rate + start_rate); break; } } // capture this iterations rotation rate and lean angle float gyro_reading = 0; switch (axis) { case ROLL: gyro_reading = ahrs_view->get_gyro().x; lean_angle = direction_sign * (ahrs_view->roll_sensor - (int32_t)start_angle); break; case PITCH: gyro_reading = ahrs_view->get_gyro().y; lean_angle = direction_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle); break; case YAW: gyro_reading = ahrs_view->get_gyro().z; lean_angle = direction_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle); break; } // Add filter to measurements float filter_value; switch (tune_type) { case SP_DOWN: case SP_UP: filter_value = direction_sign * (ToDeg(gyro_reading) * 100.0f); break; default: filter_value = direction_sign * (ToDeg(gyro_reading) * 100.0f - start_rate); break; } rotation_rate = rotation_rate_filt.apply(filter_value, AP::scheduler().get_loop_period_s()); switch (tune_type) { case RD_UP: case RD_DOWN: twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); break; case RP_UP: twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); break; case SP_DOWN: case SP_UP: twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max); twitching_measure_acceleration(test_accel_max, rotation_rate - direction_sign * start_rate, rate_max); break; } // Check for failure causing reverse response if (lean_angle <= -AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD) { step = WAITING_FOR_LEVEL; } // log this iterations lean angle and rotation rate Log_Write_AutoTuneDetails(lean_angle, rotation_rate); ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control); log_pids(); break; } case UPDATE_GAINS: // re-enable rate limits attitude_control->use_sqrt_controller(true); // log the latest gains if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); break; } } else { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); break; } } // Check results after mini-step to increase rate D gain switch (tune_type) { case RD_UP: switch (axis) { case ROLL: updating_rate_d_up(tune_roll_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_d_up(tune_pitch_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } break; // Check results after mini-step to decrease rate D gain case RD_DOWN: switch (axis) { case ROLL: updating_rate_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } break; // Check results after mini-step to increase rate P gain case RP_UP: switch (axis) { case ROLL: updating_rate_p_up_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case PITCH: updating_rate_p_up_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; case YAW: updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); break; } break; // Check results after mini-step to increase stabilize P gain case SP_DOWN: switch (axis) { case ROLL: updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case PITCH: updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case YAW: updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; } break; // Check results after mini-step to increase stabilize P gain case SP_UP: switch (axis) { case ROLL: updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case PITCH: updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; case YAW: updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); break; } break; } // we've complete this step, finalize pids and move to next step if (counter >= AUTOTUNE_SUCCESS_COUNT) { // reset counter counter = 0; // reset scaling factor step_scaler = 1.0f; // move to the next tuning type switch (tune_type) { case RD_UP: tune_type = TuneType(tune_type + 1); break; case RD_DOWN: tune_type = TuneType(tune_type + 1); switch (axis) { case ROLL: tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF); tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RD_BACKOFF); break; case PITCH: tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF); tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RD_BACKOFF); break; case YAW: tune_yaw_rLPF = MAX(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF); tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RD_BACKOFF); break; } break; case RP_UP: tune_type = TuneType(tune_type + 1); switch (axis) { case ROLL: tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF); break; case PITCH: tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF); break; case YAW: tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF); break; } break; case SP_DOWN: tune_type = TuneType(tune_type + 1); break; case SP_UP: // we've reached the end of a D-up-down PI-up-down tune type cycle tune_type = RD_UP; // advance to the next axis bool complete = false; switch (axis) { case ROLL: axes_completed |= AUTOTUNE_AXIS_BITMASK_ROLL; tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF); tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); if (pitch_enabled()) { axis = PITCH; } else if (yaw_enabled()) { axis = YAW; } else { complete = true; } break; case PITCH: axes_completed |= AUTOTUNE_AXIS_BITMASK_PITCH; tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF); tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); if (yaw_enabled()) { axis = YAW; } else { complete = true; } break; case YAW: axes_completed |= AUTOTUNE_AXIS_BITMASK_YAW; tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF); tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF); complete = true; break; } // if we've just completed all axes we have successfully completed the autotune // change to TESTING mode to allow user to fly with new gains if (complete) { mode = SUCCESS; update_gcs(AUTOTUNE_MESSAGE_SUCCESS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS); AP_Notify::events.autotune_complete = true; } else { AP_Notify::events.autotune_next_axis = true; } break; } } // reverse direction positive_direction = !positive_direction; if (axis == YAW) { attitude_control->input_euler_angle_roll_pitch_yaw(0.0f, 0.0f, ahrs_view->yaw_sensor, false); } // set gains to their intra-test values (which are very close to the original gains) load_gains(GAIN_INTRA_TEST); // reset testing step step = WAITING_FOR_LEVEL; step_start_time_ms = now; level_start_time_ms = step_start_time_ms; step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS; break; } } // backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains void AC_AutoTune::backup_gains_and_initialise() { // initialise state because this is our first time if (roll_enabled()) { axis = ROLL; } else if (pitch_enabled()) { axis = PITCH; } else if (yaw_enabled()) { axis = YAW; } // no axes are complete axes_completed = 0; positive_direction = false; step = WAITING_FOR_LEVEL; step_start_time_ms = AP_HAL::millis(); level_start_time_ms = step_start_time_ms; tune_type = RD_UP; step_scaler = 1.0f; desired_yaw_cd = ahrs_view->yaw_sensor; aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f); orig_bf_feedforward = attitude_control->get_bf_feedforward(); // backup original pids and initialise tuned pid values orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max(); tune_roll_rp = attitude_control->get_rate_roll_pid().kP(); tune_roll_rd = attitude_control->get_rate_roll_pid().kD(); tune_roll_sp = attitude_control->get_angle_roll_p().kP(); tune_roll_accel = attitude_control->get_accel_roll_max(); orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max(); tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); tune_pitch_sp = attitude_control->get_angle_pitch_p().kP(); tune_pitch_accel = attitude_control->get_accel_pitch_max(); orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_accel = attitude_control->get_accel_yaw_max(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); tune_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_accel = attitude_control->get_accel_yaw_max(); AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED); } // load_orig_gains - set gains to their original values // called by stop and failed functions void AC_AutoTune::load_orig_gains() { attitude_control->bf_feedforward(orig_bf_feedforward); if (roll_enabled()) { if (!is_zero(orig_roll_rp)) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_ri); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_angle_roll_p().kP(orig_roll_sp); attitude_control->set_accel_roll_max(orig_roll_accel); } } if (pitch_enabled()) { if (!is_zero(orig_pitch_rp)) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); attitude_control->set_accel_pitch_max(orig_pitch_accel); } } if (yaw_enabled()) { if (!is_zero(orig_yaw_rp)) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); attitude_control->set_accel_yaw_max(orig_yaw_accel); } } } // load_tuned_gains - load tuned gains void AC_AutoTune::load_tuned_gains() { if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward(true); attitude_control->set_accel_roll_max(0.0f); attitude_control->set_accel_pitch_max(0.0f); } if (roll_enabled()) { if (!is_zero(tune_roll_rp)) { attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->set_accel_roll_max(tune_roll_accel); } } if (pitch_enabled()) { if (!is_zero(tune_pitch_rp)) { attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->set_accel_pitch_max(tune_pitch_accel); } } if (yaw_enabled()) { if (!is_zero(tune_yaw_rp)) { attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->set_accel_yaw_max(tune_yaw_accel); } } } // load_intra_test_gains - gains used between tests // called during testing mode's update-gains step to set gains ahead of return-to-level step void AC_AutoTune::load_intra_test_gains() { // we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) // sanity check the gains attitude_control->bf_feedforward(true); if (roll_enabled()) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_angle_roll_p().kP(orig_roll_sp); } if (pitch_enabled()) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); } if (yaw_enabled()) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); } } // load_twitch_gains - load the to-be-tested gains for a single axis // called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) void AC_AutoTune::load_twitch_gains() { switch (axis) { case ROLL: attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*0.01f); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(0.0f); attitude_control->get_rate_roll_pid().filt_T_hz(0.0f); attitude_control->get_angle_roll_p().kP(tune_roll_sp); break; case PITCH: attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*0.01f); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(0.0f); attitude_control->get_rate_pitch_pid().filt_T_hz(0.0f); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); break; case YAW: attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(0.0f); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(0.0f); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); break; } } /* load a specified set of gains */ void AC_AutoTune::load_gains(enum GainType gain_type) { switch (gain_type) { case GAIN_ORIGINAL: load_orig_gains(); break; case GAIN_INTRA_TEST: load_intra_test_gains(); break; case GAIN_TWITCH: load_twitch_gains(); break; case GAIN_TUNED: load_tuned_gains(); break; } } // save_tuning_gains - save the final tuned gains for each axis // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) void AC_AutoTune::save_tuning_gains() { // see if we successfully completed tuning of at least one axis if (axes_completed == 0) { return; } if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward_save(true); attitude_control->save_accel_roll_max(0.0f); attitude_control->save_accel_pitch_max(0.0f); } // sanity check the rate P values if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) { // rate roll gains attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().save_gains(); // stabilize roll attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->get_angle_roll_p().save_gains(); // acceleration roll attitude_control->save_accel_roll_max(tune_roll_accel); // resave pids to originals in case the autotune is run again orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) { // rate pitch gains attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().save_gains(); // stabilize pitch attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->get_angle_pitch_p().save_gains(); // acceleration pitch attitude_control->save_accel_pitch_max(tune_pitch_accel); // resave pids to originals in case the autotune is run again orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { // rate yaw gains attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(0.0f); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().save_gains(); // stabilize yaw attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->get_angle_yaw_p().save_gains(); // acceleration yaw attitude_control->save_accel_yaw_max(tune_yaw_accel); // resave pids to originals in case the autotune is run again orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); orig_yaw_accel = attitude_control->get_accel_yaw_max(); } // update GCS and log save gains event update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS); reset(); } // update_gcs - send message to ground station void AC_AutoTune::update_gcs(uint8_t message_id) const { switch (message_id) { case AUTOTUNE_MESSAGE_STARTED: gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Started"); break; case AUTOTUNE_MESSAGE_STOPPED: gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Stopped"); break; case AUTOTUNE_MESSAGE_SUCCESS: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Success"); break; case AUTOTUNE_MESSAGE_FAILED: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Failed"); break; case AUTOTUNE_MESSAGE_TESTING: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Pilot Testing"); break; case AUTOTUNE_MESSAGE_SAVED_GAINS: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Saved gains for %s%s%s", (axes_completed&AUTOTUNE_AXIS_BITMASK_ROLL)?"Roll ":"", (axes_completed&AUTOTUNE_AXIS_BITMASK_PITCH)?"Pitch ":"", (axes_completed&AUTOTUNE_AXIS_BITMASK_YAW)?"Yaw":""); break; } } // axis helper functions inline bool AC_AutoTune::roll_enabled() { return axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL; } inline bool AC_AutoTune::pitch_enabled() { return axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH; } inline bool AC_AutoTune::yaw_enabled() { return axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW; } // twitching_test_rate - twitching tests // update min and max and test for end conditions void AC_AutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max) { const uint32_t now = AP_HAL::millis(); // capture maximum rate if (rate > meas_rate_max) { // the measurement is continuing to increase without stopping meas_rate_max = rate; meas_rate_min = rate; } // capture minimum measurement after the measurement has peaked (aka "bounce back") if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) { // the measurement is bouncing back meas_rate_min = rate; } // calculate early stopping time based on the time it takes to get to 75% if (meas_rate_max < rate_target_max * 0.75f) { // the measurement not reached the 75% threshold yet step_time_limit_ms = (now - step_start_time_ms) * 3; step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); } if (meas_rate_max > rate_target_max) { // the measured rate has passed the maximum target rate step = UPDATE_GAINS; } if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { // the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold step = UPDATE_GAINS; } if (now - step_start_time_ms >= step_time_limit_ms) { // we have passed the maximum stop time step = UPDATE_GAINS; } } // twitching_test_rate - twitching tests // update min and max and test for end conditions void AC_AutoTune::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min) { if (angle >= angle_max) { if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) { // we have reached the angle limit before completing the measurement of maximum and minimum // reduce the maximum target rate step_scaler *= 0.9f; // ignore result and start test again step = WAITING_FOR_LEVEL; } else { step = UPDATE_GAINS; } } } // twitching_test_angle - twitching tests // update min and max and test for end conditions void AC_AutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max) { const uint32_t now = AP_HAL::millis(); // capture maximum angle if (angle > meas_angle_max) { // the angle still increasing meas_angle_max = angle; meas_angle_min = angle; } // capture minimum angle after we have reached a reasonable maximum angle if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) { // the measurement is bouncing back meas_angle_min = angle; } // capture maximum rate if (rate > meas_rate_max) { // the measurement is still increasing meas_rate_max = rate; meas_rate_min = rate; } // capture minimum rate after we have reached maximum rate if (rate < meas_rate_min) { // the measurement is still decreasing meas_rate_min = rate; } // calculate early stopping time based on the time it takes to get to 75% if (meas_angle_max < angle_target_max * 0.75f) { // the measurement not reached the 75% threshold yet step_time_limit_ms = (now - step_start_time_ms) * 3; step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); } if (meas_angle_max > angle_target_max) { // the measurement has passed the maximum angle step = UPDATE_GAINS; } if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) { // the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold step = UPDATE_GAINS; } if (now - step_start_time_ms >= step_time_limit_ms) { // we have passed the maximum stop time step = UPDATE_GAINS; } } // twitching_measure_acceleration - measure rate of change of measurement void AC_AutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const { if (rate_measurement_max < rate_measurement) { rate_measurement_max = rate_measurement; rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms); } } // updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back // optimize D term while keeping the maximum just below the target by adjusting P void AC_AutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D gain so stop tuning tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { // we have a good measurement of bounce back if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { // ignore the next result unless it is the same as this one ignore_next = true; // bounce back is bigger than our threshold so increment the success counter counter++; } else { if (ignore_next == false) { // bounce back is smaller than our threshold so decrement the success counter if (counter > 0) { counter--; } // increase D gain (which should increase bounce back) tune_d += tune_d*tune_d_step_ratio*2.0f; // stop tuning if we hit maximum D if (tune_d >= tune_d_max) { tune_d = tune_d_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } } // updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back // optimize D term while keeping the maximum just below the target by adjusting P void AC_AutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D gain tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D so stop tuning tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { // we have a good measurement of bounce back if (meas_rate_max-meas_rate_min < meas_rate_max*aggressiveness) { if (ignore_next == false) { // bounce back is less than our threshold so increment the success counter counter++; } else { ignore_next = false; } } else { // ignore the next result unless it is the same as this one ignore_next = true; // bounce back is larger than our threshold so decrement the success counter if (counter > 0) { counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // stop tuning if we hit minimum D if (tune_d <= tune_d_min) { tune_d = tune_d_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } } // updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing // P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold void AC_AutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) { if (meas_rate_max > rate_target*(1+0.5f*aggressiveness)) { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was greater than target so increment the success counter counter++; } else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) && (tune_d > tune_d_min)) { // if bounce back was larger than the threshold so decrement the success counter if (counter > 0) { counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // do not decrease the D term past the minimum if (tune_d <= tune_d_min) { tune_d = tune_d_min; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } // decrease P gain to match D gain reduction tune_p -= tune_p*tune_p_step_ratio; // do not decrease the P term past the minimum if (tune_p <= tune_p_min) { tune_p = tune_p_min; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } // cancel change in direction positive_direction = !positive_direction; } else { if (ignore_next == false) { // if maximum measurement was lower than target so decrement the success counter if (counter > 0) { counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } // updating_angle_p_down - decrease P until we don't reach the target before time out // P is decreased to ensure we are not overshooting the target void AC_AutoTune::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) { if (meas_angle_max < angle_target*(1+0.5f*aggressiveness)) { if (ignore_next == false) { // if maximum measurement was lower than target so increment the success counter counter++; } else { ignore_next = false; } } else { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was higher than target so decrement the success counter if (counter > 0) { counter--; } // decrease P gain (which should decrease the maximum) tune_p -= tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p <= tune_p_min) { tune_p = tune_p_min; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } } // updating_angle_p_up - increase P to ensure the target is reached // P is increased until we achieve our target within a reasonable time void AC_AutoTune::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) { if ((meas_angle_max > angle_target*(1+0.5f*aggressiveness)) || ((meas_angle_max > angle_target) && (meas_rate_min < -meas_rate_max*aggressiveness))) { // ignore the next result unless it is the same as this one ignore_next = true; // if maximum measurement was greater than target so increment the success counter counter++; } else { if (ignore_next == false) { // if maximum measurement was lower than target so decrement the success counter if (counter > 0) { counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { ignore_next = false; } } } /* check if we have a good position estimate */ bool AC_AutoTune::position_ok(void) { if (!AP::ahrs().have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav->get_filter_status(); // require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } // get attitude for slow position hold in autotune mode void AC_AutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out) { roll_cd_out = pitch_cd_out = 0; if (!use_poshold) { // we are not trying to hold position return; } // do we know where we are? If not then don't do poshold if (!position_ok()) { return; } if (!have_position) { have_position = true; start_position = inertial_nav->get_position(); } // don't go past 10 degrees, as autotune result would deteriorate too much const float angle_max_cd = 1000; // hit the 10 degree limit at 20 meters position error const float dist_limit_cm = 2000; // we only start adjusting yaw if we are more than 5m from the // target position. That corresponds to a lean angle of 2.5 degrees const float yaw_dist_limit_cm = 500; Vector3f pdiff = inertial_nav->get_position() - start_position; pdiff.z = 0; float dist_cm = pdiff.length(); if (dist_cm < 10) { // don't do anything within 10cm return; } /* very simple linear controller */ float scaling = constrain_float(angle_max_cd * dist_cm / dist_limit_cm, 0, angle_max_cd); Vector2f angle_ne(pdiff.x, pdiff.y); angle_ne *= scaling / dist_cm; // rotate into body frame pitch_cd_out = angle_ne.x * ahrs_view->cos_yaw() + angle_ne.y * ahrs_view->sin_yaw(); roll_cd_out = angle_ne.x * ahrs_view->sin_yaw() - angle_ne.y * ahrs_view->cos_yaw(); if (dist_cm < yaw_dist_limit_cm) { // no yaw adjustment return; } /* also point so that twitching occurs perpendicular to the wind, if we have drifted more than yaw_dist_limit_cm from the desired position. This ensures that autotune doesn't have to deal with more than 2.5 degrees of attitude on the axis it is tuning */ float target_yaw_cd = degrees(atan2f(pdiff.y, pdiff.x)) * 100; if (axis == PITCH) { // for roll and yaw tuning we point along the wind, for pitch // we point across the wind target_yaw_cd += 9000; } // go to the nearest 180 degree mark, with 5 degree slop to prevent oscillation if (fabsf(yaw_cd_out - target_yaw_cd) > 9500) { target_yaw_cd += 18000; } yaw_cd_out = target_yaw_cd; } // @LoggerMessage: ATUN // @Description: Copter/QuadPlane AutoTune // @Vehicles: Copter, Plane // @Field: TimeUS: Time since system startup // @Field: Axis: which axis is currently being tuned // @Field: TuneStep: step in autotune process // @Field: Targ: target angle or rate, depending on tuning step // @Field: Min: measured minimum target angle or rate // @Field: Max: measured maximum target angle or rate // @Field: RP: new rate gain P term // @Field: RD: new rate gain D term // @Field: SP: new angle P term // @Field: ddt: maximum measured twitching acceleration // Write an Autotune data packet void AC_AutoTune::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt) { AP::logger().Write( "ATUN", "TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt", "s--ddd---o", "F--000---0", "QBBfffffff", AP_HAL::micros64(), axis, tune_step, meas_target*0.01f, meas_min*0.01f, meas_max*0.01f, new_gain_rp, new_gain_rd, new_gain_sp, new_ddt); } // Write an Autotune data packet void AC_AutoTune::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) { // @LoggerMessage: ATDE // @Description: AutoTune data packet // @Field: TimeUS: Time since system startup // @Field: Angle: current angle // @Field: Rate: current angular rate AP::logger().Write( "ATDE", "TimeUS,Angle,Rate", "sdk", "F00", "Qff", AP_HAL::micros64(), angle_cd*0.01f, rate_cds*0.01f); }