// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- /* allow for runtime change of control channel ordering */ static void set_control_channels(void) { channel_roll = RC_Channel::rc_channel(rcmap.roll()-1); channel_pitch = RC_Channel::rc_channel(rcmap.pitch()-1); channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); channel_rudder = RC_Channel::rc_channel(rcmap.yaw()-1); // set rc channel ranges channel_roll->set_angle(SERVO_MAX); channel_pitch->set_angle(SERVO_MAX); channel_rudder->set_angle(SERVO_MAX); channel_throttle->set_range(0, 100); if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) { hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_min); } } /* initialise RC input channels */ static void init_rc_in() { // set rc dead zones channel_roll->set_default_dead_zone(30); channel_pitch->set_default_dead_zone(30); channel_rudder->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); update_aux(); } /* initialise RC output channels */ static void init_rc_out() { channel_roll->enable_out(); channel_pitch->enable_out(); if (arming.arming_required() != AP_Arming::YES_ZERO_PWM) { channel_throttle->enable_out(); } channel_rudder->enable_out(); RC_Channel_aux::enable_aux_servos(); // Initialization of servo outputs for (uint8_t i=0; i<8; i++) { RC_Channel::rc_channel(i)->output_trim(); } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_9, g.rc_9.radio_trim); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_10, g.rc_10.radio_trim); servo_write(CH_11, g.rc_11.radio_trim); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_12, g.rc_12.radio_trim); #endif // setup PX4 to output the min throttle when safety off if arming // is setup for min on disarm if (arming.arming_required() == AP_Arming::YES_MIN_PWM) { hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_min); } } // check for pilot input on rudder stick for arming static void rudder_arm_check() { //TODO: ensure rudder arming disallowed during radio calibration //TODO: waggle ailerons and rudder and beep after rudder arming static uint32_t rudder_arm_timer; if (arming.is_armed()) { //already armed, no need to run remainder of this function rudder_arm_timer = 0; return; } if (! arming.rudder_arming_enabled()) { //parameter disallows rudder arming return; } //if throttle is not down, then pilot cannot rudder arm if (g.rc_3.control_in > 0) { rudder_arm_timer = 0; return; } //if not in a 'manual' mode then disallow rudder arming if (auto_throttle_mode ) { rudder_arm_timer = 0; return; } // full right rudder starts arming counter if (g.rc_4.control_in > 4000) { uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) rudder_arm_timer = now; } else { //time to arm! if (arming.arm(AP_Arming::RUDDER)) { channel_throttle->enable_out(); //only log if arming was successful Log_Arm_Disarm(); } } } else { // not at full right rudder rudder_arm_timer = 0; } } static void read_radio() { if (!hal.rcin->new_input()) { control_failsafe(channel_throttle->radio_in); return; } failsafe.last_valid_rc_ms = hal.scheduler->millis(); elevon.ch1_temp = channel_roll->read(); elevon.ch2_temp = channel_pitch->read(); uint16_t pwm_roll, pwm_pitch; if (g.mix_mode == 0) { pwm_roll = elevon.ch1_temp; pwm_pitch = elevon.ch2_temp; }else{ pwm_roll = BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int16_t(elevon.ch2_temp - elevon.trim2) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int16_t(elevon.ch1_temp - elevon.trim1)) / 2 + 1500; pwm_pitch = (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int16_t(elevon.ch2_temp - elevon.trim2) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int16_t(elevon.ch1_temp - elevon.trim1)) / 2 + 1500; } if (control_mode == TRAINING) { // in training mode we don't want to use a deadzone, as we // want manual pass through when not exceeding attitude limits channel_roll->set_pwm_no_deadzone(pwm_roll); channel_pitch->set_pwm_no_deadzone(pwm_pitch); channel_throttle->set_pwm_no_deadzone(channel_throttle->read()); channel_rudder->set_pwm_no_deadzone(channel_rudder->read()); } else { channel_roll->set_pwm(pwm_roll); channel_pitch->set_pwm(pwm_pitch); channel_throttle->set_pwm(channel_throttle->read()); channel_rudder->set_pwm(channel_rudder->read()); } g.rc_5.set_pwm(hal.rcin->read(CH_5)); g.rc_6.set_pwm(hal.rcin->read(CH_6)); g.rc_7.set_pwm(hal.rcin->read(CH_7)); g.rc_8.set_pwm(hal.rcin->read(CH_8)); control_failsafe(channel_throttle->radio_in); channel_throttle->servo_out = channel_throttle->control_in; if (g.throttle_nudge && channel_throttle->servo_out > 50) { float nudge = (channel_throttle->servo_out - 50) * 0.02f; if (airspeed.use()) { airspeed_nudge_cm = (aparm.airspeed_max * 100 - g.airspeed_cruise_cm) * nudge; } else { throttle_nudge = (aparm.throttle_max - aparm.throttle_cruise) * nudge; } } else { airspeed_nudge_cm = 0; throttle_nudge = 0; } rudder_arm_check(); } static void control_failsafe(uint16_t pwm) { if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 1000 || rc_failsafe_active()) { // we do not have valid RC input. Set all primary channel // control inputs to the trim value and throttle to min channel_roll->radio_in = channel_roll->radio_trim; channel_pitch->radio_in = channel_pitch->radio_trim; channel_rudder->radio_in = channel_rudder->radio_trim; channel_throttle->radio_in = channel_throttle->radio_min; channel_roll->control_in = 0; channel_pitch->control_in = 0; channel_rudder->control_in = 0; channel_throttle->control_in = 0; } if(g.throttle_fs_enabled == 0) return; // Check for failsafe condition based on loss of GCS control if (failsafe.rc_override_active) { if (millis() - failsafe.last_heartbeat_ms > g.short_fs_timeout*1000) { failsafe.ch3_failsafe = true; AP_Notify::flags.failsafe_radio = true; } else { failsafe.ch3_failsafe = false; AP_Notify::flags.failsafe_radio = false; } //Check for failsafe and debounce funky reads } else if (g.throttle_fs_enabled) { if (rc_failsafe_active()) { // we detect a failsafe from radio // throttle has dropped below the mark failsafe.ch3_counter++; if (failsafe.ch3_counter == 10) { gcs_send_text_fmt(PSTR("MSG FS ON %u"), (unsigned)pwm); failsafe.ch3_failsafe = true; AP_Notify::flags.failsafe_radio = true; } if (failsafe.ch3_counter > 10) { failsafe.ch3_counter = 10; } }else if(failsafe.ch3_counter > 0) { // we are no longer in failsafe condition // but we need to recover quickly failsafe.ch3_counter--; if (failsafe.ch3_counter > 3) { failsafe.ch3_counter = 3; } if (failsafe.ch3_counter == 1) { gcs_send_text_fmt(PSTR("MSG FS OFF %u"), (unsigned)pwm); } else if(failsafe.ch3_counter == 0) { failsafe.ch3_failsafe = false; AP_Notify::flags.failsafe_radio = false; } } } } static void trim_control_surfaces() { read_radio(); int16_t trim_roll_range = (channel_roll->radio_max - channel_roll->radio_min)/5; int16_t trim_pitch_range = (channel_pitch->radio_max - channel_pitch->radio_min)/5; if (channel_roll->radio_in < channel_roll->radio_min+trim_roll_range || channel_roll->radio_in > channel_roll->radio_max-trim_roll_range || channel_pitch->radio_in < channel_pitch->radio_min+trim_pitch_range || channel_pitch->radio_in > channel_pitch->radio_max-trim_pitch_range) { // don't trim for extreme values - if we attempt to trim so // there is less than 20 percent range left then assume the // sticks are not properly centered. This also prevents // problems with starting APM with the TX off return; } // Store control surface trim values // --------------------------------- if(g.mix_mode == 0) { if (channel_roll->radio_in != 0) { channel_roll->radio_trim = channel_roll->radio_in; } if (channel_pitch->radio_in != 0) { channel_pitch->radio_trim = channel_pitch->radio_in; } // the secondary aileron/elevator is trimmed only if it has a // corresponding transmitter input channel, which k_aileron // doesn't have RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron_with_input); RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_elevator_with_input); } else{ if (elevon.ch1_temp != 0) { elevon.trim1 = elevon.ch1_temp; } if (elevon.ch2_temp != 0) { elevon.trim2 = elevon.ch2_temp; } //Recompute values here using new values for elevon1_trim and elevon2_trim //We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed uint16_t center = 1500; channel_roll->radio_trim = center; channel_pitch->radio_trim = center; } if (channel_rudder->radio_in != 0) { channel_rudder->radio_trim = channel_rudder->radio_in; } // save to eeprom channel_roll->save_eeprom(); channel_pitch->save_eeprom(); channel_rudder->save_eeprom(); } static void trim_radio() { for (uint8_t y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); } /* return true if throttle level is below throttle failsafe threshold or RC input is invalid */ static bool rc_failsafe_active(void) { if (!g.throttle_fs_enabled) { return false; } if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 1000) { // we haven't had a valid RC frame for 1 seconds return true; } if (channel_throttle->get_reverse()) { return channel_throttle->radio_in >= g.throttle_fs_value; } return channel_throttle->radio_in <= g.throttle_fs_value; }