/// @file AP_MotorsMatrix.h /// @brief Motor control class for Matrixcopters #pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include // RC Channel Library #include "AP_MotorsMulticopter.h" #define AP_MOTORS_MATRIX_YAW_FACTOR_CW -1 #define AP_MOTORS_MATRIX_YAW_FACTOR_CCW 1 /// @class AP_MotorsMatrix class AP_MotorsMatrix : public AP_MotorsMulticopter { public: /// Constructor AP_MotorsMatrix(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) : AP_MotorsMulticopter(loop_rate, speed_hz) {}; // init void init(motor_frame_class frame_class, motor_frame_type frame_type); // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type); // set update rate to motors - a value in hertz // you must have setup_motors before calling this void set_update_rate(uint16_t speed_hz); // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void output_test(uint8_t motor_seq, int16_t pwm); // output_to_motors - sends minimum values out to the motors void output_to_motors(); // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t get_motor_mask() override; protected: // output - sends commands to the motors void output_armed_stabilizing(); // add_motor using raw roll, pitch, throttle and yaw factors void add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order); // add_motor using just position and yaw_factor (or prop direction) void add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order); // add_motor using separate roll and pitch factors (for asymmetrical frames) and prop direction void add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order); // remove_motor void remove_motor(int8_t motor_num); // configures the motors for the defined frame_class and frame_type virtual void setup_motors(motor_frame_class frame_class, motor_frame_type frame_type); // normalizes the roll, pitch and yaw factors so maximum magnitude is 0.5 void normalise_rpy_factors(); // call vehicle supplied thrust compensation if set void thrust_compensation(void) override; float _roll_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to roll float _pitch_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to pitch float _yaw_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to yaw (normally 1 or -1) float _thrust_rpyt_out[AP_MOTORS_MAX_NUM_MOTORS]; // combined roll, pitch, yaw and throttle outputs to motors in 0~1 range uint8_t _test_order[AP_MOTORS_MAX_NUM_MOTORS]; // order of the motors in the test sequence motor_frame_class _last_frame_class; // most recently requested frame class (i.e. quad, hexa, octa, etc) motor_frame_type _last_frame_type; // most recently requested frame type (i.e. plus, x, v, etc) };