/* failsafe support Andrew Tridgell, December 2011 */ #include "Rover.h" /* our failsafe strategy is to detect main loop lockup and switch to passing inputs straight from the RC inputs to RC outputs. */ /* this failsafe_check function is called from the core timer interrupt at 1kHz. */ void Rover::failsafe_check() { static uint16_t last_ticks; static uint32_t last_timestamp; const uint32_t tnow = AP_HAL::micros(); const uint16_t ticks = scheduler.ticks(); if (ticks != last_ticks) { // the main loop is running, all is OK last_ticks = ticks; last_timestamp = tnow; return; } if (tnow - last_timestamp > 200000) { // we have gone at least 0.2 seconds since the main loop // ran. That means we're in trouble, or perhaps are in // an initialisation routine or log erase. disarm the motors // To-Do: log error to dataflash if (arming.is_armed()) { // disarm motors disarm_motors(); } } } /* called to set/unset a failsafe event. */ void Rover::failsafe_trigger(uint8_t failsafe_type, bool on) { uint8_t old_bits = failsafe.bits; if (on) { failsafe.bits |= failsafe_type; } else { failsafe.bits &= ~failsafe_type; } if (old_bits == 0 && failsafe.bits != 0) { // a failsafe event has started failsafe.start_time = millis(); } if (failsafe.triggered != 0 && failsafe.bits == 0) { // a failsafe event has ended gcs().send_text(MAV_SEVERITY_INFO, "Failsafe ended"); } failsafe.triggered &= failsafe.bits; if (failsafe.triggered == 0 && failsafe.bits != 0 && millis() - failsafe.start_time > g.fs_timeout * 1000 && control_mode != &mode_rtl && control_mode != &mode_hold) { failsafe.triggered = failsafe.bits; gcs().send_text(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", static_cast(failsafe.triggered)); switch (g.fs_action) { case 0: break; case 1: if (!set_mode(mode_rtl, MODE_REASON_FAILSAFE)) { set_mode(mode_hold, MODE_REASON_FAILSAFE); } break; case 2: set_mode(mode_hold, MODE_REASON_FAILSAFE); break; case 3: if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) { if (!set_mode(mode_rtl, MODE_REASON_FAILSAFE)) { set_mode(mode_hold, MODE_REASON_FAILSAFE); } } break; case 4: if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) { set_mode(mode_hold, MODE_REASON_FAILSAFE); } break; } } } void Rover::handle_battery_failsafe(const char* type_str, const int8_t action) { switch ((Failsafe_Action)action) { case Failsafe_Action_None: break; case Failsafe_Action_SmartRTL: if (set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) { break; } FALLTHROUGH; case Failsafe_Action_RTL: if (set_mode(mode_rtl, MODE_REASON_FAILSAFE)) { break; } FALLTHROUGH; case Failsafe_Action_Hold: set_mode(mode_hold, MODE_REASON_FAILSAFE); break; case Failsafe_Action_SmartRTL_Hold: if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) { set_mode(mode_hold, MODE_REASON_FAILSAFE); } break; case Failsafe_Action_Terminate: #if ADVANCED_FAILSAFE == ENABLED char battery_type_str[17]; snprintf(battery_type_str, 17, "%s battery", type_str); afs.gcs_terminate(true, battery_type_str); #else disarm_motors(); #endif // ADVANCED_FAILSAFE == ENABLED break; } } #if ADVANCED_FAILSAFE == ENABLED /* check for AFS failsafe check */ void Rover::afs_fs_check(void) { // perform AFS failsafe checks g2.afs.check(rover.last_heartbeat_ms, rover.g2.fence.get_breaches() != 0, failsafe.last_valid_rc_ms); } #endif