/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* simulator connector for FlightAxis */ #include "SIM_FlightAxis.h" #include #include #include #include #include #include #include #include #include #include "pthread.h" extern const AP_HAL::HAL& hal; using namespace SITL; // the asprintf() calls are not worth checking for SITL #pragma GCC diagnostic ignored "-Wunused-result" FlightAxis::FlightAxis(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str) { use_time_sync = false; rate_hz = 250 / target_speedup; heli_demix = strstr(frame_str, "helidemix") != nullptr; rev4_servos = strstr(frame_str, "rev4") != nullptr; const char *colon = strchr(frame_str, ':'); if (colon) { controller_ip = colon+1; } // FlightAxis sensor data is not good enough for EKF. Use fake EKF by default AP_Param::set_default_by_name("AHRS_EKF_TYPE", 10); AP_Param::set_default_by_name("INS_GYR_CAL", 0); if (strstr(frame_str, "pitch270")) { // rotate tailsitter airframes for fixed wing view rotation = ROTATION_PITCH_270; } if (strstr(frame_str, "pitch90")) { // rotate tailsitter airframes for fixed wing view rotation = ROTATION_PITCH_90; } switch (rotation) { case ROTATION_NONE: break; case ROTATION_PITCH_90: att_rotation.from_euler(0, radians(90), 0); break; case ROTATION_PITCH_270: att_rotation.from_euler(0, radians(270), 0); break; default: AP_HAL::panic("Unsupported flightaxis rotation %u\n", (unsigned)rotation); } /* Create the thread that will be waiting for data from FlightAxis */ mutex = hal.util->new_semaphore(); int ret = pthread_create(&thread, NULL, update_thread, this); if (ret != 0) { AP_HAL::panic("SIM_FlightAxis: failed to create thread"); } } /* update thread trampoline */ void *FlightAxis::update_thread(void *arg) { FlightAxis *flightaxis = (FlightAxis *)arg; pthread_setname_np(pthread_self(), "ardupilot-flightaxis"); flightaxis->update_loop(); return nullptr; } /* main update loop */ void FlightAxis::update_loop(void) { while (true) { struct sitl_input new_input; mutex->take(HAL_SEMAPHORE_BLOCK_FOREVER); new_input = last_input; mutex->give(); exchange_data(new_input); } } /* extremely primitive SOAP parser that assumes the format used by FlightAxis */ void FlightAxis::parse_reply(const char *reply) { const char *reply0 = reply; for (uint16_t i=0; i'); if (p != nullptr) { reply = p; } } } /* make a SOAP request, returning body of reply */ char *FlightAxis::soap_request(const char *action, const char *fmt, ...) { va_list ap; char *req1; va_start(ap, fmt); vasprintf(&req1, fmt, ap); va_end(ap); //printf("%s\n", req1); // open SOAP socket to FlightAxis SocketAPM sock(false); if (!sock.connect(controller_ip, controller_port)) { free(req1); return nullptr; } sock.set_blocking(false); char *req; asprintf(&req, R"(POST / HTTP/1.1 soapaction: '%s' content-length: %u content-type: text/xml;charset='UTF-8' Connection: Keep-Alive %s)", action, (unsigned)strlen(req1), req1); sock.send(req, strlen(req)); free(req1); free(req); char reply[10000]; memset(reply, 0, sizeof(reply)); ssize_t ret = sock.recv(reply, sizeof(reply)-1, 1000); if (ret <= 0) { printf("No data\n"); return nullptr; } char *p = strstr(reply, "Content-Length: "); if (p == nullptr) { printf("No Content-Length\n"); return nullptr; } // get the content length uint32_t content_length = strtoul(p+16, nullptr, 10); char *body = strstr(p, "\r\n\r\n"); if (body == nullptr) { printf("No body\n"); return nullptr; } body += 4; // get the rest of the body int32_t expected_length = content_length + (body - reply); if (expected_length >= (int32_t)sizeof(reply)) { printf("Reply too large %i\n", expected_length); return nullptr; } while (ret < expected_length) { ssize_t ret2 = sock.recv(&reply[ret], sizeof(reply)-(1+ret), 100); if (ret2 <= 0) { return nullptr; } // nul terminate reply[ret+ret2] = 0; ret += ret2; } return strdup(reply); } void FlightAxis::exchange_data(const struct sitl_input &input) { if (!controller_started || is_zero(state.m_flightAxisControllerIsActive) || !is_zero(state.m_resetButtonHasBeenPressed)) { printf("Starting controller at %s\n", controller_ip); // call a restore first. This allows us to connect after the aircraft is changed in RealFlight char *reply = soap_request("RestoreOriginalControllerDevice", R"( 12 )"); free(reply); reply = soap_request("InjectUAVControllerInterface", R"( 12 )"); free(reply); activation_frame_counter = frame_counter; controller_started = true; } float scaled_servos[8]; for (uint8_t i=0; i<8; i++) { scaled_servos[i] = (input.servos[i] - 1000) / 1000.0f; } if (rev4_servos) { // swap first 4 and last 4 servos, for quadplane testing float saved[4]; memcpy(saved, &scaled_servos[0], sizeof(saved)); memcpy(&scaled_servos[0], &scaled_servos[4], sizeof(saved)); memcpy(&scaled_servos[4], saved, sizeof(saved)); } if (heli_demix) { // FlightAxis expects "roll/pitch/collective/yaw" input float swash1 = scaled_servos[0]; float swash2 = scaled_servos[1]; float swash3 = scaled_servos[2]; float roll_rate = swash1 - swash2; float pitch_rate = -((swash1+swash2) / 2.0f - swash3); scaled_servos[0] = constrain_float(roll_rate + 0.5, 0, 1); scaled_servos[1] = constrain_float(pitch_rate + 0.5, 0, 1); } char *reply = soap_request("ExchangeData", R"( 255 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f )", scaled_servos[0], scaled_servos[1], scaled_servos[2], scaled_servos[3], scaled_servos[4], scaled_servos[5], scaled_servos[6], scaled_servos[7]); if (reply) { mutex->take(HAL_SEMAPHORE_BLOCK_FOREVER); double lastt_s = state.m_currentPhysicsTime_SEC; parse_reply(reply); double dt = state.m_currentPhysicsTime_SEC - lastt_s; if (dt > 0 && dt < 0.1) { if (average_frame_time_s < 1.0e-6) { average_frame_time_s = dt; } average_frame_time_s = average_frame_time_s * 0.98 + dt * 0.02; } socket_frame_counter++; mutex->give(); free(reply); } } /* update the FlightAxis simulation by one time step */ void FlightAxis::update(const struct sitl_input &input) { mutex->take(HAL_SEMAPHORE_BLOCK_FOREVER); last_input = input; double dt_seconds = state.m_currentPhysicsTime_SEC - last_time_s; if (dt_seconds < 0) { // cope with restarting RealFlight while connected initial_time_s = time_now_us * 1.0e-6f; last_time_s = state.m_currentPhysicsTime_SEC; position_offset.zero(); mutex->give(); return; } if (dt_seconds < 0.00001f) { float delta_time = 0.001; // don't go past the next expected frame if (delta_time + extrapolated_s > average_frame_time_s) { delta_time = average_frame_time_s - extrapolated_s; } if (delta_time <= 0) { usleep(1000); mutex->give(); return; } time_now_us += delta_time * 1.0e6; extrapolate_sensors(delta_time); update_position(); update_mag_field_bf(); mutex->give(); usleep(delta_time*1.0e6); extrapolated_s += delta_time; report_FPS(); return; } extrapolated_s = 0; if (initial_time_s <= 0) { dt_seconds = 0.001f; initial_time_s = state.m_currentPhysicsTime_SEC - dt_seconds; } /* the queternion convention in realflight seems to have Z negative */ Quaternion quat(state.m_orientationQuaternion_W, state.m_orientationQuaternion_Y, state.m_orientationQuaternion_X, -state.m_orientationQuaternion_Z); quat.rotation_matrix(dcm); gyro = Vector3f(radians(constrain_float(state.m_rollRate_DEGpSEC, -2000, 2000)), radians(constrain_float(state.m_pitchRate_DEGpSEC, -2000, 2000)), -radians(constrain_float(state.m_yawRate_DEGpSEC, -2000, 2000))) * target_speedup; velocity_ef = Vector3f(state.m_velocityWorldU_MPS, state.m_velocityWorldV_MPS, state.m_velocityWorldW_MPS); position = Vector3f(state.m_aircraftPositionY_MTR, state.m_aircraftPositionX_MTR, -state.m_altitudeASL_MTR - home.alt*0.01); accel_body(state.m_accelerationBodyAX_MPS2, state.m_accelerationBodyAY_MPS2, state.m_accelerationBodyAZ_MPS2); if (rotation != ROTATION_NONE) { dcm.transpose(); dcm = att_rotation * dcm; dcm.transpose(); gyro.rotate(rotation); accel_body.rotate(rotation); } // accel on the ground is nasty in realflight, and prevents helicopter disarm if (state.m_isTouchingGround) { Vector3f accel_ef = (velocity_ef - last_velocity_ef) / dt_seconds; accel_ef.z -= GRAVITY_MSS; accel_body = dcm.transposed() * accel_ef; } // limit to 16G to match pixhawk float a_limit = GRAVITY_MSS*16; accel_body.x = constrain_float(accel_body.x, -a_limit, a_limit); accel_body.y = constrain_float(accel_body.y, -a_limit, a_limit); accel_body.z = constrain_float(accel_body.z, -a_limit, a_limit); // offset based on first position to account for offset in RF world if (position_offset.is_zero() || state.m_resetButtonHasBeenPressed) { position_offset = position; } position -= position_offset; airspeed = state.m_airspeed_MPS; airspeed_pitot = state.m_airspeed_MPS; battery_voltage = state.m_batteryVoltage_VOLTS; battery_current = state.m_batteryCurrentDraw_AMPS; rpm1 = state.m_heliMainRotorRPM; rpm2 = state.m_propRPM; /* the interlink interface supports 8 input channels */ rcin_chan_count = 8; for (uint8_t i=0; i 500000) { // time going backwards time_now_us = new_time_us; } } else { time_now_us = new_time_us; } last_time_s = state.m_currentPhysicsTime_SEC; last_velocity_ef = velocity_ef; // update magnetic field update_mag_field_bf(); mutex->give(); report_FPS(); } /* report frame rates */ void FlightAxis::report_FPS(void) { if (frame_counter++ % 1000 == 0) { if (last_frame_count_s != 0) { uint64_t frames = socket_frame_counter - last_socket_frame_counter; last_socket_frame_counter = socket_frame_counter; double dt = state.m_currentPhysicsTime_SEC - last_frame_count_s; printf("%.2f/%.2f FPS avg=%.2f\n", frames / dt, 1000 / dt, 1.0/average_frame_time_s); } else { printf("Initial position %f %f %f\n", position.x, position.y, position.z); } last_frame_count_s = state.m_currentPhysicsTime_SEC; } }