// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_RangeFinder_analog.cpp - rangefinder for analog source * */ #include #include #include #include "RangeFinder.h" #include "AP_RangeFinder_analog.h" extern const AP_HAL::HAL& hal; /* The constructor also initialises the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_analog::AP_RangeFinder_analog(RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state) : AP_RangeFinder_Backend(_ranger, instance, _state) { source = hal.analogin->channel(ranger._pin[instance]); if (source == NULL) { // failed to allocate a ADC channel? This shouldn't happen set_status(RangeFinder::RangeFinder_NotConnected); return; } source->set_stop_pin((uint8_t)ranger._stop_pin[instance]); source->set_settle_time((uint16_t)ranger._settle_time_ms[instance]); set_status(RangeFinder::RangeFinder_NoData); } /* detect if an analog rangefinder is connected. The only thing we can do is check if the pin number is valid. If it is, then assume that the device is connected */ bool AP_RangeFinder_analog::detect(RangeFinder &_ranger, uint8_t instance) { if (_ranger._pin[instance] != -1) { return true; } return false; } /* update raw voltage state */ void AP_RangeFinder_analog::update_voltage(void) { if (source == NULL) { state.voltage_mv = 0; return; } // cope with changed settings source->set_pin(ranger._pin[state.instance]); source->set_stop_pin((uint8_t)ranger._stop_pin[state.instance]); source->set_settle_time((uint16_t)ranger._settle_time_ms[state.instance]); if (ranger._ratiometric[state.instance]) { state.voltage_mv = source->voltage_average_ratiometric() * 1000U; } else { state.voltage_mv = source->voltage_average() * 1000U; } } /* update distance_cm */ void AP_RangeFinder_analog::update(void) { update_voltage(); float v = state.voltage_mv * 0.001f; float dist_m = 0; float scaling = ranger._scaling[state.instance]; float offset = ranger._offset[state.instance]; RangeFinder::RangeFinder_Function function = (RangeFinder::RangeFinder_Function)ranger._function[state.instance].get(); int16_t max_distance_cm = ranger._max_distance_cm[state.instance]; switch (function) { case RangeFinder::FUNCTION_LINEAR: dist_m = (v - offset) * scaling; break; case RangeFinder::FUNCTION_INVERTED: dist_m = (offset - v) * scaling; break; case RangeFinder::FUNCTION_HYPERBOLA: if (v <= offset) { dist_m = 0; } dist_m = scaling / (v - offset); if (isinf(dist_m) || dist_m > max_distance_cm) { dist_m = max_distance_cm * 0.01; } break; } if (dist_m < 0) { dist_m = 0; } state.distance_cm = dist_m * 100.0f; // update range_valid state based on distance measured update_status(); }