/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include #include #include "AP_HAL_AVR_SITL_Namespace.h" #include "HAL_AVR_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include #include #include #include #include #include #include #include #include typedef void *(*pthread_startroutine_t)(void *); #ifdef __CYGWIN__ #include #include #include #include #include void print_trace() { char pid_buf[30]; sprintf(pid_buf, "%d", getpid()); char name_buf[512]; name_buf[readlink("/proc/self/exe", name_buf, 511)]=0; int child_pid = fork(); if (!child_pid) { dup2(2,1); // redirect output to stderr fprintf(stdout,"stack trace for %s pid=%s\n",name_buf,pid_buf); execlp("gdb", "gdb", "--batch", "-n", "-ex", "thread", "-ex", "bt", name_buf, pid_buf, NULL); abort(); /* If gdb failed to start */ } else { waitpid(child_pid,NULL,0); } } #endif extern const AP_HAL::HAL& hal; using namespace AVR_SITL; // this allows loop_hook to be called SITL_State *g_state; // catch floating point exceptions static void _sig_fpe(int signum) { fprintf(stderr, "ERROR: Floating point exception - aborting\n"); abort(); } void SITL_State::_usage(void) { fprintf(stdout, "Options:\n"); fprintf(stdout, "\t-w wipe eeprom and dataflash\n"); fprintf(stdout, "\t-r RATE set SITL framerate\n"); fprintf(stdout, "\t-H HEIGHT initial barometric height\n"); fprintf(stdout, "\t-C use console instead of TCP ports\n"); fprintf(stdout, "\t-I set instance of SITL (adds 10*instance to all port numbers)\n"); } void SITL_State::_parse_command_line(int argc, char * const argv[]) { int opt; signal(SIGFPE, _sig_fpe); // No-op SIGPIPE handler signal(SIGPIPE, SIG_IGN); setvbuf(stdout, (char *)0, _IONBF, 0); setvbuf(stderr, (char *)0, _IONBF, 0); _synthetic_clock_mode = false; _base_port = 5760; _rcout_port = 5502; _simin_port = 5501; while ((opt = getopt(argc, argv, "swhr:H:CI:P:S")) != -1) { switch (opt) { case 'w': AP_Param::erase_all(); unlink("dataflash.bin"); break; case 'r': _framerate = (unsigned)atoi(optarg); break; case 'H': _initial_height = atof(optarg); break; case 'C': AVR_SITL::SITLUARTDriver::_console = true; break; case 'I': { uint8_t instance = atoi(optarg); _base_port += instance * 10; _rcout_port += instance * 10; _simin_port += instance * 10; } break; case 'P': _set_param_default(optarg); break; case 'S': _synthetic_clock_mode = true; break; default: _usage(); exit(1); } } fprintf(stdout, "Starting sketch '%s'\n", SKETCH); if (strcmp(SKETCH, "ArduCopter") == 0) { _vehicle = ArduCopter; if (_framerate == 0) { _framerate = 200; } } else if (strcmp(SKETCH, "APMrover2") == 0) { _vehicle = APMrover2; if (_framerate == 0) { _framerate = 50; } // set right default throttle for rover (allowing for reverse) pwm_input[2] = 1500; } else { _vehicle = ArduPlane; if (_framerate == 0) { _framerate = 50; } } _sitl_setup(); } void SITL_State::_set_param_default(char *parm) { char *p = strchr(parm, '='); if (p == NULL) { printf("Please specify parameter as NAME=VALUE"); exit(1); } float value = atof(p+1); *p = 0; enum ap_var_type var_type; AP_Param *vp = AP_Param::find(parm, &var_type); if (vp == NULL) { printf("Unknown parameter %s\n", parm); exit(1); } if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT32) { ((AP_Int32 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT16) { ((AP_Int16 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT8) { ((AP_Int8 *)vp)->set_and_save(value); } else { printf("Unable to set parameter %s\n", parm); exit(1); } printf("Set parameter %s to %f\n", parm, value); } /* setup for SITL handling */ void SITL_State::_sitl_setup(void) { #ifndef __CYGWIN__ _parent_pid = getppid(); #endif _rcout_addr.sin_family = AF_INET; _rcout_addr.sin_port = htons(_rcout_port); inet_pton(AF_INET, "127.0.0.1", &_rcout_addr.sin_addr); #ifndef HIL_MODE _setup_fdm(); #endif fprintf(stdout, "Starting SITL input\n"); // find the barometer object if it exists _sitl = (SITL *)AP_Param::find_object("SIM_"); _barometer = (AP_Baro *)AP_Param::find_object("GND_"); _ins = (AP_InertialSensor *)AP_Param::find_object("INS_"); _compass = (Compass *)AP_Param::find_object("COMPASS_"); _terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_"); _optical_flow = (OpticalFlow *)AP_Param::find_object("FLOW"); if (_sitl != NULL) { // setup some initial values #ifndef HIL_MODE _update_barometer(_initial_height); _update_ins(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0, _initial_height); _update_compass(0, 0, 0); _update_gps(0, 0, 0, 0, 0, 0, false); #endif } if (_synthetic_clock_mode) { // start with non-zero clock hal.scheduler->stop_clock(100); } // setup a pipe used to trigger loop to stop sleeping pipe(_fdm_pipe); AVR_SITL::SITLUARTDriver::_set_nonblocking(_fdm_pipe[0]); AVR_SITL::SITLUARTDriver::_set_nonblocking(_fdm_pipe[1]); g_state = this; /* setup thread that receives input from the FDM */ pthread_attr_t thread_attr; pthread_attr_init(&thread_attr); pthread_create(&_fdm_thread_ctx, &thread_attr, (pthread_startroutine_t)&AVR_SITL::SITL_State::_fdm_thread, this); } #ifndef HIL_MODE /* setup a SITL FDM listening UDP port */ void SITL_State::_setup_fdm(void) { int one=1, ret; struct sockaddr_in sockaddr; memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(_simin_port); sockaddr.sin_family = AF_INET; _sitl_fd = socket(AF_INET, SOCK_DGRAM, 0); if (_sitl_fd == -1) { fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ setsockopt(_sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); ret = bind(_sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "SITL: bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } AVR_SITL::SITLUARTDriver::_set_nonblocking(_sitl_fd); } #endif /* thread for FDM input */ void SITL_State::_fdm_thread(void) { uint32_t last_update_count = 0; uint32_t last_pwm_input = 0; while (true) { fd_set fds; struct timeval tv; if (next_stop_clock != 0) { hal.scheduler->stop_clock(next_stop_clock); next_stop_clock = 0; } tv.tv_sec = 1; tv.tv_usec = 0; FD_ZERO(&fds); FD_SET(_sitl_fd, &fds); if (select(_sitl_fd+1, &fds, NULL, NULL, &tv) != 1) { // internal error _simulator_output(true); continue; } /* check for packet from flight sim */ _fdm_input(); /* make sure we die if our parent dies */ if (kill(_parent_pid, 0) != 0) { exit(1); } if (_scheduler->interrupts_are_blocked() || _sitl == NULL) { continue; } // simulate RC input at 50Hz if (hal.scheduler->millis() - last_pwm_input >= 20 && _sitl->rc_fail == 0) { last_pwm_input = hal.scheduler->millis(); new_rc_input = true; } _scheduler->sitl_begin_atomic(); if (_update_count == 0 && _sitl != NULL) { _update_gps(0, 0, 0, 0, 0, 0, false); _update_barometer(0); _scheduler->timer_event(); _scheduler->sitl_end_atomic(); continue; } if (_update_count == last_update_count) { _scheduler->timer_event(); _scheduler->sitl_end_atomic(); continue; } last_update_count = _update_count; if (_sitl != NULL) { _update_gps(_sitl->state.latitude, _sitl->state.longitude, _sitl->state.altitude, _sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD, !_sitl->gps_disable); _update_ins(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg, _sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate, _sitl->state.xAccel, _sitl->state.yAccel, _sitl->state.zAccel, _sitl->state.airspeed, _sitl->state.altitude); _update_barometer(_sitl->state.altitude); _update_compass(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg); _update_flow(); } // trigger all APM timers. _scheduler->timer_event(); _scheduler->sitl_end_atomic(); char b = 0; write(_fdm_pipe[1], &b, 1); } } #ifndef HIL_MODE /* check for a SITL FDM packet */ void SITL_State::_fdm_input(void) { ssize_t size; struct pwm_packet { uint16_t pwm[8]; }; union { struct { uint64_t timestamp; struct sitl_fdm fg_pkt; } fg_pkt_timestamped; struct sitl_fdm fg_pkt; struct pwm_packet pwm_pkt; } d; bool got_fg_input = false; next_stop_clock = 0; size = recv(_sitl_fd, &d, sizeof(d), MSG_DONTWAIT); switch (size) { case 148: /* a fg packate with a timestamp */ next_stop_clock = d.fg_pkt_timestamped.timestamp; memmove(&d.fg_pkt, &d.fg_pkt_timestamped.fg_pkt, sizeof(d.fg_pkt)); _synthetic_clock_mode = true; // fall through case 140: static uint32_t last_report; static uint32_t count; if (d.fg_pkt.magic != 0x4c56414f) { fprintf(stdout, "Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic); return; } got_fg_input = true; if (d.fg_pkt.latitude == 0 || d.fg_pkt.longitude == 0 || d.fg_pkt.altitude <= 0) { // garbage input return; } if (_sitl != NULL) { _sitl->state = d.fg_pkt; // prevent bad inputs from SIM from corrupting our state double *v = &_sitl->state.latitude; for (uint8_t i=0; i<17; i++) { if (isinf(v[i]) || isnan(v[i]) || fabsf(v[i]) > 1.0e10) { v[i] = 0; } } } _update_count++; count++; if (hal.scheduler->millis() - last_report > 1000) { //fprintf(stdout, "SIM %u FPS\n", count); count = 0; last_report = hal.scheduler->millis(); } break; case 16: { // a packet giving the receiver PWM inputs uint8_t i; for (i=0; i<8; i++) { // setup the pwn input for the RC channel inputs if (d.pwm_pkt.pwm[i] != 0) { pwm_input[i] = d.pwm_pkt.pwm[i]; } } break; } } if (got_fg_input) { // send RC output to flight sim _simulator_output(_synthetic_clock_mode); } } #endif /* apply servo rate filtering This allows simulation of servo lag */ void SITL_State::_apply_servo_filter(float deltat) { if (_sitl->servo_rate < 1.0f) { // no limit return; } // 1000 usec == 90 degrees uint16_t max_change = deltat * _sitl->servo_rate * 1000 / 90; if (max_change == 0) { max_change = 1; } for (uint8_t i=0; i<11; i++) { int16_t change = (int16_t)pwm_output[i] - (int16_t)last_pwm_output[i]; if (change > max_change) { pwm_output[i] = last_pwm_output[i] + max_change; } else if (change < -max_change) { pwm_output[i] = last_pwm_output[i] - max_change; } } } /* send RC outputs to simulator */ void SITL_State::_simulator_output(bool synthetic_clock_mode) { static uint32_t last_update_usec; struct { uint16_t pwm[11]; uint16_t speed, direction, turbulance; } control; /* this maps the registers used for PWM outputs. The RC * driver updates these whenever it wants the channel output * to change */ uint8_t i; if (last_update_usec == 0) { for (i=0; i<11; i++) { pwm_output[i] = 1000; } if (_vehicle == ArduPlane) { pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500; pwm_output[7] = 1800; } if (_vehicle == APMrover2) { pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500; pwm_output[7] = 1800; } for (i=0; i<11; i++) { last_pwm_output[i] = pwm_output[i]; } } if (_sitl == NULL) { return; } // output at chosen framerate uint32_t now = hal.scheduler->micros(); if (!synthetic_clock_mode && last_update_usec != 0 && now - last_update_usec < 1000000/_framerate) { return; } float deltat = (now - last_update_usec) * 1.0e-6f; last_update_usec = now; _apply_servo_filter(deltat); for (i=0; i<11; i++) { if (pwm_output[i] == 0xFFFF) { control.pwm[i] = 0; } else { control.pwm[i] = pwm_output[i]; } last_pwm_output[i] = pwm_output[i]; } if (_vehicle == ArduPlane) { // add in engine multiplier if (control.pwm[2] > 1000) { control.pwm[2] = ((control.pwm[2]-1000) * _sitl->engine_mul) + 1000; if (control.pwm[2] > 2000) control.pwm[2] = 2000; } _motors_on = ((control.pwm[2]-1000)/1000.0) > 0; } else if (_vehicle == APMrover2) { // add in engine multiplier if (control.pwm[2] != 1500) { control.pwm[2] = ((control.pwm[2]-1500) * _sitl->engine_mul) + 1500; if (control.pwm[2] > 2000) control.pwm[2] = 2000; if (control.pwm[2] < 1000) control.pwm[2] = 1000; } _motors_on = ((control.pwm[2]-1500)/500.0) != 0; } else { _motors_on = false; // apply engine multiplier to first motor control.pwm[0] = ((control.pwm[0]-1000) * _sitl->engine_mul) + 1000; // run checks on each motor for (i=0; i<4; i++) { // check motors do not exceed their limits if (control.pwm[i] > 2000) control.pwm[i] = 2000; if (control.pwm[i] < 1000) control.pwm[i] = 1000; // update motor_on flag if ((control.pwm[i]-1000)/1000.0 > 0) { _motors_on = true; } } } float throttle = _motors_on?(control.pwm[2]-1000) / 1000.0f:0; // lose 0.7V at full throttle float voltage = _sitl->batt_voltage - 0.7f*throttle; // assume 50A at full throttle _current = 50.0 * throttle; // assume 3DR power brick voltage_pin_value = ((voltage / 10.1) / 5.0) * 1024; current_pin_value = ((_current / 17.0) / 5.0) * 1024; // setup wind control float wind_speed = _sitl->wind_speed * 100; float altitude = _barometer?_barometer->get_altitude():0; if (altitude < 0) { altitude = 0; } if (altitude < 60) { wind_speed *= altitude / 60.0f; } control.speed = wind_speed; float direction = _sitl->wind_direction; if (direction < 0) { direction += 360; } control.direction = direction * 100; control.turbulance = _sitl->wind_turbulance * 100; // zero the wind for the first 15s to allow pitot calibration if (hal.scheduler->millis() < 15000) { control.speed = 0; } sendto(_sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&_rcout_addr, sizeof(_rcout_addr)); } // generate a random float between -1 and 1 float SITL_State::_rand_float(void) { return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6; } // generate a random Vector3f of size 1 Vector3f SITL_State::_rand_vec3f(void) { Vector3f v = Vector3f(_rand_float(), _rand_float(), _rand_float()); if (v.length() != 0.0) { v.normalize(); } return v; } void SITL_State::init(int argc, char * const argv[]) { pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500; pwm_input[4] = pwm_input[7] = 1800; pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000; _scheduler = (SITLScheduler *)hal.scheduler; _parse_command_line(argc, argv); } // wait for serial input, or 100usec void SITL_State::loop_hook(void) { struct timeval tv; fd_set fds; int fd, max_fd = 0; FD_ZERO(&fds); fd = ((AVR_SITL::SITLUARTDriver*)hal.uartA)->_fd; if (fd != -1) { FD_SET(fd, &fds); max_fd = max(fd, max_fd); } fd = ((AVR_SITL::SITLUARTDriver*)hal.uartB)->_fd; if (fd != -1) { FD_SET(fd, &fds); max_fd = max(fd, max_fd); } fd = ((AVR_SITL::SITLUARTDriver*)hal.uartC)->_fd; if (fd != -1) { FD_SET(fd, &fds); max_fd = max(fd, max_fd); } fd = ((AVR_SITL::SITLUARTDriver*)hal.uartD)->_fd; if (fd != -1) { FD_SET(fd, &fds); max_fd = max(fd, max_fd); } fd = ((AVR_SITL::SITLUARTDriver*)hal.uartE)->_fd; if (fd != -1) { FD_SET(fd, &fds); max_fd = max(fd, max_fd); } FD_SET(_fdm_pipe[0], &fds); max_fd = max(_fdm_pipe[0], max_fd); tv.tv_sec = 0; tv.tv_usec = 100; fflush(stdout); fflush(stderr); select(max_fd+1, &fds, NULL, NULL, &tv); if (FD_ISSET(_fdm_pipe[0], &fds)) { char b; read(_fdm_pipe[0], &b, 1); } } /* return height above the ground in meters */ float SITL_State::height_agl(void) { static float home_alt = -1; if (home_alt == -1 && _sitl->state.altitude > 0) { // remember home altitude as first non-zero altitude home_alt = _sitl->state.altitude; } if (_terrain && _sitl->terrain_enable) { // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; struct Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; if (_terrain->height_amsl(location, terrain_height_amsl)) { return _sitl->state.altitude - terrain_height_amsl; } } // fall back to flat earth model return _sitl->state.altitude - home_alt; } #endif