/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for * Ardupilot Mega * Code by Randy Mackay. DIYDrones.com * */ #include #include "AP_OpticalFlow_ADNS3080.h" extern const AP_HAL::HAL& hal; #define AP_SPI_TIMEOUT 1000 union NumericIntType { int16_t intValue; uint16_t uintValue; uint8_t byteValue[2]; }; // Constructors //////////////////////////////////////////////////////////////// AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080(uint8_t reset_pin) : _reset_pin(reset_pin) { num_pixels = ADNS3080_PIXELS_X; field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV; scaler = AP_OPTICALFLOW_ADNS3080_SCALER; } // Public Methods ////////////////////////////////////////////////////////////// // init - initialise sensor // assumes SPI bus has been initialised but will attempt to initialise // nonstandard SPI3 bus if required bool AP_OpticalFlow_ADNS3080::init() { int8_t retry = 0; bool retvalue = false; // suspend timer while we set-up SPI communication hal.scheduler->suspend_timer_procs(); // reset the device if the reset pin has been defined if(_reset_pin != 0) { hal.gpio->pinMode(_reset_pin, GPIO_OUTPUT); } // reset the device reset(); // get pointer to the spi bus _spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI0); if (_spi == NULL) { retvalue = false; goto finish; } // check 3 times for the sensor on standard SPI bus while( retvalue == false && retry < 3 ) { if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) { retvalue = true; goto finish; } retry++; } // if not found, get pointer to the SPI3 bus _spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI3); if (_spi == NULL) { retvalue = false; goto finish; } // check 3 times on SPI3 retry = 0; while( retvalue == false && retry < 3 ) { if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) { retvalue = true; } retry++; } // If we fail to find on SPI3, no connection available. retvalue = false; _spi = NULL; finish: // if device is working register the global static read function to // be called at 1khz if( retvalue ) { hal.scheduler->register_timer_process( AP_OpticalFlow_ADNS3080::read ); } // resume timer hal.scheduler->resume_timer_procs(); return retvalue; } // Read a register from the sensor uint8_t AP_OpticalFlow_ADNS3080::read_register(uint8_t address) { AP_HAL::Semaphore *spi_sem; // check that we have an spi bus if (_spi == NULL) { return 0; } // get spi bus semaphore spi_sem = _spi->get_semaphore(); // try to get control of the spi bus if (spi_sem == NULL || !spi_sem->take_nonblocking()) { return 0; } _spi->cs_assert(); // send the device the register you want to read: _spi->transfer(address); hal.scheduler->delay_microseconds(50); // send a value of 0 to read the first byte returned: uint8_t result = _spi->transfer(0x00); _spi->cs_release(); // release the spi bus spi_sem->give(); return result; } // write a value to one of the sensor's registers void AP_OpticalFlow_ADNS3080::write_register(uint8_t address, uint8_t value) { AP_HAL::Semaphore *spi_sem; // check that we have an spi bus if (_spi == NULL) { return; } // get spi bus semaphore spi_sem = _spi->get_semaphore(); // try to get control of the spi bus if (spi_sem == NULL || !spi_sem->take_nonblocking()) { return; } _spi->cs_assert(); // send register address _spi->transfer(address | 0x80 ); hal.scheduler->delay_microseconds(50); // send data _spi->transfer(value); _spi->cs_release(); // release the spi bus spi_sem->give(); } // reset sensor by holding a pin high (or is it low?) for 10us. void AP_OpticalFlow_ADNS3080::reset() { // return immediately if the reset pin is not defined if( _reset_pin == 0) return; // reset sensor hal.gpio->write(_reset_pin, 1); hal.scheduler->delay_microseconds(10); // return sensor to normal hal.gpio->write(_reset_pin, 0); } // read latest values from sensor and fill in x,y and totals void AP_OpticalFlow_ADNS3080::update(uint32_t now) { uint8_t motion_reg; surface_quality = read_register(ADNS3080_SQUAL); hal.scheduler->delay_microseconds(50); // check for movement, update x,y values motion_reg = read_register(ADNS3080_MOTION); // check if we've had an overflow _overflow = ((motion_reg & 0x10) != 0); if( (motion_reg & 0x80) != 0 ) { raw_dx = ((int8_t)read_register(ADNS3080_DELTA_X)); hal.scheduler->delay_microseconds(50); raw_dy = ((int8_t)read_register(ADNS3080_DELTA_Y)); _motion = true; }else{ raw_dx = 0; raw_dy = 0; } last_update = hal.scheduler->millis(); apply_orientation_matrix(); } void AP_OpticalFlow_ADNS3080::disable_serial_pullup() { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); regVal = (regVal | ADNS3080_SERIALNPU_OFF); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_EXTENDED_CONFIG, regVal); } // get_led_always_on - returns true if LED is always on, false if only on // when required bool AP_OpticalFlow_ADNS3080::get_led_always_on() { return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 ); } // set_led_always_on - set parameter to true if you want LED always on, // otherwise false for only when required void AP_OpticalFlow_ADNS3080::set_led_always_on( bool alwaysOn ) { uint8_t regVal = read_register(ADNS3080_CONFIGURATION_BITS); regVal = (regVal & 0xbf) | (alwaysOn << 6); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_CONFIGURATION_BITS, regVal); } // returns resolution (either 400 or 1600 counts per inch) int16_t AP_OpticalFlow_ADNS3080::get_resolution() { if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 ) return 400; else return 1600; } // set parameter to 400 or 1600 counts per inch void AP_OpticalFlow_ADNS3080::set_resolution(uint16_t resolution) { uint8_t regVal = read_register(ADNS3080_CONFIGURATION_BITS); if( resolution == ADNS3080_RESOLUTION_400 ) { regVal &= ~0x10; scaler = AP_OPTICALFLOW_ADNS3080_SCALER; }else if( resolution == ADNS3080_RESOLUTION_1600) { regVal |= 0x10; scaler = AP_OPTICALFLOW_ADNS3080_SCALER * 4; } hal.scheduler->delay_microseconds(50); write_register(ADNS3080_CONFIGURATION_BITS, regVal); // this will affect conversion factors so update them update_conversion_factors(); } // get_frame_rate_auto - return whether frame rate is set to "auto" or manual bool AP_OpticalFlow_ADNS3080::get_frame_rate_auto() { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( (regVal & 0x01) != 0 ) { return false; }else{ return true; } } // set_frame_rate_auto - set frame rate to auto (true) or manual (false) void AP_OpticalFlow_ADNS3080::set_frame_rate_auto(bool auto_frame_rate) { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); hal.scheduler->delay_microseconds(50); if( auto_frame_rate == true ) { // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A); hal.scheduler->delay_microseconds(50); // decide what value to update in extended config regVal = (regVal & ~0x01); }else{ // decide what value to update in extended config regVal = (regVal & ~0x01) | 0x01; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); } // get frame period uint16_t AP_OpticalFlow_ADNS3080::get_frame_period() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); hal.scheduler->delay_microseconds(50); aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); return aNum.uintValue; } // set frame period void AP_OpticalFlow_ADNS3080::set_frame_period(uint16_t period) { NumericIntType aNum; aNum.uintValue = period; // set frame rate to manual set_frame_rate_auto(false); hal.scheduler->delay_microseconds(50); // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); } uint16_t AP_OpticalFlow_ADNS3080::get_frame_rate() { uint32_t clockSpeed = ADNS3080_CLOCK_SPEED; uint16_t rate = clockSpeed / get_frame_period(); return rate; } void AP_OpticalFlow_ADNS3080::set_frame_rate(uint16_t rate) { uint32_t clockSpeed = ADNS3080_CLOCK_SPEED; uint16_t period = (uint16_t)(clockSpeed / (uint32_t)rate); set_frame_period(period); } // get_shutter_speed_auto - returns true if shutter speed is adjusted // automatically, false if manual bool AP_OpticalFlow_ADNS3080::get_shutter_speed_auto() { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( (regVal & 0x02) > 0 ) { return false; }else{ return true; } } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) void AP_OpticalFlow_ADNS3080::set_shutter_speed_auto(bool auto_shutter_speed) { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); hal.scheduler->delay_microseconds(50); if( auto_shutter_speed ) { // return shutter speed max to default write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20); hal.scheduler->delay_microseconds(50); // determine value to put into extended config regVal &= ~0x02; }else{ // determine value to put into extended config regVal |= 0x02; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); hal.scheduler->delay_microseconds(50); } // get_shutter_speed_auto - returns true if shutter speed is adjusted // automatically, false if manual uint16_t AP_OpticalFlow_ADNS3080::get_shutter_speed() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER); hal.scheduler->delay_microseconds(50); aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER); return aNum.uintValue; } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) void AP_OpticalFlow_ADNS3080::set_shutter_speed(uint16_t shutter_speed) { NumericIntType aNum; aNum.uintValue = shutter_speed; // set shutter speed to manual set_shutter_speed_auto(false); hal.scheduler->delay_microseconds(50); // set specific shutter speed write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]); hal.scheduler->delay_microseconds(50); // larger delay hal.scheduler->delay(50); // need to update frame period to cause shutter value to take effect aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); hal.scheduler->delay_microseconds(50); aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); hal.scheduler->delay_microseconds(50); } // clear_motion - will cause the Delta_X, Delta_Y, and internal motion // registers to be cleared void AP_OpticalFlow_ADNS3080::clear_motion() { // writing anything to this register will clear the sensor's motion // registers write_register(ADNS3080_MOTION_CLEAR,0xFF); x = 0; y = 0; dx = 0; dy = 0; _motion = false; } // get_pixel_data - captures an image from the sensor and stores it to the // pixe_data array void AP_OpticalFlow_ADNS3080::print_pixel_data() { int16_t i,j; bool isFirstPixel = true; uint8_t regValue; uint8_t pixelValue; // write to frame capture register to force capture of frame write_register(ADNS3080_FRAME_CAPTURE,0x83); // wait 3 frame periods + 10 nanoseconds for frame to be captured // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. // so 500 x 3 + 10 = 1510 hal.scheduler->delay_microseconds(1510); // display the pixel data for( i=0; iprintln_P( PSTR("Optflow: failed to find first pixel")); } isFirstPixel = false; pixelValue = ( regValue << 2 ); hal.console->print(pixelValue,DEC); if( j!= ADNS3080_PIXELS_X-1 ) hal.console->print_P(PSTR(",")); hal.scheduler->delay_microseconds(50); } hal.console->println(); } // hardware reset to restore sensor to normal operation reset(); }