/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // Unit tests for the AP_Math rotations code // #include #include #include FastSerialPort(Serial, 0); #ifdef DESKTOP_BUILD // all of this is needed to build with SITL #include #include #include #include #include #include #include #include #include #include #include #include // ArduPilot Mega Declination Helper Library #include #include #include Arduino_Mega_ISR_Registry isr_registry; AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; #endif // standard rotation matrices (these are the originals from the old code) #define MATRIX_ROTATION_NONE Matrix3f(1, 0, 0, 0, 1, 0, 0,0, 1) #define MATRIX_ROTATION_YAW_45 Matrix3f(0.70710678, -0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_90 Matrix3f(0, -1, 0, 1, 0, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_135 Matrix3f(-0.70710678, -0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_180 Matrix3f(-1, 0, 0, 0, -1, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_225 Matrix3f(-0.70710678, 0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_270 Matrix3f(0, 1, 0, -1, 0, 0, 0, 0, 1) #define MATRIX_ROTATION_YAW_315 Matrix3f(0.70710678, 0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, 1) #define MATRIX_ROTATION_ROLL_180 Matrix3f(1, 0, 0, 0, -1, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_45 Matrix3f(0.70710678, 0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_90 Matrix3f(0, 1, 0, 1, 0, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_135 Matrix3f(-0.70710678, 0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, -1) #define MATRIX_ROTATION_PITCH_180 Matrix3f(-1, 0, 0, 0, 1, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_225 Matrix3f(-0.70710678, -0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_270 Matrix3f(0, -1, 0, -1, 0, 0, 0, 0, -1) #define MATRIX_ROTATION_ROLL_180_YAW_315 Matrix3f(0.70710678, -0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, -1) static void print_matrix(Matrix3f &m) { Serial.printf("[%.2f %.2f %.2f] [%.2f %.2f %.2f] [%.2f %.2f %.2f]\n", m.a.x, m.a.y, m.a.z, m.b.x, m.b.y, m.b.z, m.c.x, m.c.y, m.c.z); } // test one matrix static void test_matrix(enum Rotation rotation, Matrix3f m) { Matrix3f m2, diff; const float accuracy = 1.0e-6; m2.rotation(rotation); diff = (m - m2); if (diff.a.length() > accuracy || diff.b.length() > accuracy || diff.c.length() > accuracy) { Serial.printf("rotation matrix %u incorrect\n", (unsigned)rotation); print_matrix(m); print_matrix(m2); } } // test generation of rotation matrices static void test_matrices(void) { Serial.println("testing rotation matrices\n"); test_matrix(ROTATION_NONE, MATRIX_ROTATION_NONE); test_matrix(ROTATION_YAW_45, MATRIX_ROTATION_YAW_45); test_matrix(ROTATION_YAW_90, MATRIX_ROTATION_YAW_90); test_matrix(ROTATION_YAW_135, MATRIX_ROTATION_YAW_135); test_matrix(ROTATION_YAW_180, MATRIX_ROTATION_YAW_180); test_matrix(ROTATION_YAW_225, MATRIX_ROTATION_YAW_225); test_matrix(ROTATION_YAW_270, MATRIX_ROTATION_YAW_270); test_matrix(ROTATION_YAW_315, MATRIX_ROTATION_YAW_315); test_matrix(ROTATION_ROLL_180, MATRIX_ROTATION_ROLL_180); test_matrix(ROTATION_ROLL_180_YAW_45, MATRIX_ROTATION_ROLL_180_YAW_45); test_matrix(ROTATION_ROLL_180_YAW_90, MATRIX_ROTATION_ROLL_180_YAW_90); test_matrix(ROTATION_ROLL_180_YAW_135, MATRIX_ROTATION_ROLL_180_YAW_135); test_matrix(ROTATION_PITCH_180, MATRIX_ROTATION_PITCH_180); test_matrix(ROTATION_ROLL_180_YAW_225, MATRIX_ROTATION_ROLL_180_YAW_225); test_matrix(ROTATION_ROLL_180_YAW_270, MATRIX_ROTATION_ROLL_180_YAW_270); test_matrix(ROTATION_ROLL_180_YAW_315, MATRIX_ROTATION_ROLL_180_YAW_315); } // test rotation of vectors static void test_vector(enum Rotation rotation, Vector3f v1, bool show=true) { Vector3f v2, diff; Matrix3f m; v2 = v1; m.rotation(rotation); v1.rotate(rotation); v2 = m * v2; diff = v1 - v2; if (diff.length() > 1.0e-6) { Serial.printf("rotation vector %u incorrect\n", (unsigned)rotation); Serial.printf("%u %f %f %f\n", (unsigned)rotation, v2.x, v2.y, v2.z); } if (show) { Serial.printf("%u %f %f %f\n", (unsigned)rotation, v1.x, v1.y, v1.z); } } // generate a random float between -1 and 1 static float rand_num(void) { float ret = ((unsigned)random()) % 2000000; return (ret - 1.0e6) / 1.0e6; } // test rotation of vectors static void test_vector(enum Rotation rotation) { uint8_t i; Vector3f v1; v1.x = 1; v1.y = 2; v1.z = 3; test_vector(rotation, v1); for (i=0; i<10; i++) { v1.x = rand_num(); v1.y = rand_num(); v1.z = rand_num(); test_vector(rotation, v1, false); } } // test rotation of vectors static void test_vectors(void) { Serial.println("testing rotation of vectors\n"); test_vector(ROTATION_NONE); test_vector(ROTATION_YAW_45); test_vector(ROTATION_YAW_90); test_vector(ROTATION_YAW_135); test_vector(ROTATION_YAW_180); test_vector(ROTATION_YAW_225); test_vector(ROTATION_YAW_270); test_vector(ROTATION_YAW_315); test_vector(ROTATION_ROLL_180); test_vector(ROTATION_ROLL_180_YAW_45); test_vector(ROTATION_ROLL_180_YAW_90); test_vector(ROTATION_ROLL_180_YAW_135); test_vector(ROTATION_PITCH_180); test_vector(ROTATION_ROLL_180_YAW_225); test_vector(ROTATION_ROLL_180_YAW_270); test_vector(ROTATION_ROLL_180_YAW_315); } // test combinations of rotations static void test_combinations(void) { enum Rotation r1, r2, r3; bool found; for (r1=ROTATION_NONE; r1 %u\n", (unsigned)r1, (unsigned)r2, (unsigned)r3); } else { Serial.printf("ERROR rotation: no combination for %u + %u\n", (unsigned)r1, (unsigned)r2); } } } } // test rotation method accuracy static void test_rotation_accuracy(void) { Matrix3f attitude; Vector3f small_rotation; float roll, pitch, yaw; int16_t i; float rot_angle; Serial.println("\nRotation method accuracy:"); for( i=0; i<90; i++ ) { // reset initial attitude attitude.from_euler(0,0,0); // calculate small rotation vector rot_angle = ToRad(i); small_rotation = Vector3f(0,0,rot_angle); // apply small rotation attitude.rotate(small_rotation); // get resulting attitude's euler angles attitude.to_euler(&roll, &pitch, &yaw); // display results Serial.printf_P(PSTR("actual angle: %d\tcalculated angle:%4.2f\n"),(int)i,ToDeg(yaw)); } } /* * rotation tests */ void setup(void) { Serial.begin(115200); Serial.println("rotation unit tests\n"); test_matrices(); test_vectors(); test_combinations(); test_rotation_accuracy(); Serial.println("rotation unit tests done\n"); } void loop(void) { }