/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_Proximity_TeraRangerTowerEvo.h" #include #include #include #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the proximity sensor. Note that this constructor is not called until detect() returns true, so we already know that we should setup the proximity sensor */ AP_Proximity_TeraRangerTowerEvo::AP_Proximity_TeraRangerTowerEvo(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state, AP_SerialManager &serial_manager) : AP_Proximity_Backend(_frontend, _state) { uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0)); } _last_request_sent_ms = AP_HAL::millis(); } // detect if a TeraRanger Tower proximity sensor is connected by looking for a configured serial port bool AP_Proximity_TeraRangerTowerEvo::detect(AP_SerialManager &serial_manager) { AP_HAL::UARTDriver *uart = nullptr; uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); return uart != nullptr; } // update the state of the sensor void AP_Proximity_TeraRangerTowerEvo::update(void) { if (uart == nullptr) { return; } //initialize the sensor if(_current_init_state != InitState::InitState_Finished) { initialise_modes(); } // process incoming messages read_sensor_data(); // check for timeout and set health status if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_TRTOWER_TIMEOUT_MS)) { set_status(AP_Proximity::Proximity_NoData); } else { set_status(AP_Proximity::Proximity_Good); } } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_TeraRangerTowerEvo::distance_max() const { return 8.0f; } float AP_Proximity_TeraRangerTowerEvo::distance_min() const { return 0.75f; } void AP_Proximity_TeraRangerTowerEvo::initialise_modes() { if((AP_HAL::millis() - _last_request_sent_ms) < _mode_request_delay) { return; } if (_current_init_state == InitState_Printout) { set_mode(BINARY_MODE, 4); } else if (_current_init_state == InitState_Sequence) { //set tower mode - 4 sensors are triggered at once with 90 deg angle between each sensor set_mode(TOWER_MODE, 4); } else if (_current_init_state == InitState_Rate) { //set update rate of the sensor. set_mode(REFRESH_100_HZ, 5); } else if (_current_init_state == InitState_StreamStart) { set_mode(ACTIVATE_STREAM, 5); } } void AP_Proximity_TeraRangerTowerEvo::set_mode(const uint8_t *c, int length) { uart->write(c, length); _last_request_sent_ms = AP_HAL::millis(); } // check for replies from sensor, returns true if at least one message was processed bool AP_Proximity_TeraRangerTowerEvo::read_sensor_data() { if (uart == nullptr) { return false; } uint16_t message_count = 0; int16_t nbytes = uart->available(); if(_current_init_state != InitState_Finished && nbytes == 4) { //Increment _current_init_state only when we receive 4 ack bytes switch (_current_init_state) { case InitState_Printout: _current_init_state = InitState_Sequence; break; case InitState_Sequence: _current_init_state = InitState_Rate; break; case InitState_Rate: _current_init_state = InitState_StreamStart; break; case InitState_StreamStart: _current_init_state = InitState_Finished; break; case InitState_Finished: break; } } while (nbytes-- > 0) { char c = uart->read(); if (c == 'T' ) { buffer_count = 0; } buffer[buffer_count++] = c; // we should always read 19 bytes THxxxxxxxxxxxxxxxxMC if (buffer_count >= 20){ buffer_count = 0; //check if message has right CRC if (crc_crc8(buffer, 19) == buffer[19]){ uint16_t d1 = process_distance(buffer[2], buffer[3]); uint16_t d2 = process_distance(buffer[4], buffer[5]); uint16_t d3 = process_distance(buffer[6], buffer[7]); uint16_t d4 = process_distance(buffer[8], buffer[9]); uint16_t d5 = process_distance(buffer[10], buffer[11]); uint16_t d6 = process_distance(buffer[12], buffer[13]); uint16_t d7 = process_distance(buffer[14], buffer[15]); uint16_t d8 = process_distance(buffer[16], buffer[17]); update_sector_data(0, d1); update_sector_data(45, d2); update_sector_data(90, d3); update_sector_data(135, d4); update_sector_data(180, d5); update_sector_data(225, d6); update_sector_data(270, d7); update_sector_data(315, d8); message_count++; } } } return (message_count > 0); } uint16_t AP_Proximity_TeraRangerTowerEvo::process_distance(uint8_t buf1, uint8_t buf2) { return (buf1 << 8) + buf2; } // process reply void AP_Proximity_TeraRangerTowerEvo::update_sector_data(int16_t angle_deg, uint16_t distance_cm) { uint8_t sector; if (convert_angle_to_sector(angle_deg, sector)) { _angle[sector] = angle_deg; _distance[sector] = ((float) distance_cm) / 1000; //check for target too far, target too close and sensor not connected _distance_valid[sector] = distance_cm != 0xffff && distance_cm != 0x0000 && distance_cm != 0x0001; _last_distance_received_ms = AP_HAL::millis(); // update boundary used for avoidance update_boundary_for_sector(sector); } }