/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == HELI_FRAME #define HELI_SERVO_AVERAGING_DIGITAL 0 // 250Hz #define HELI_SERVO_AVERAGING_ANALOG 2 // 125Hz static bool heli_swash_initialised = false; static int heli_throttle_mid = 0; // throttle mid point in pwm form (i.e. 0 ~ 1000) static float heli_collective_scalar = 1; // throttle scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500) // heli_servo_averaging: // 0 or 1 = no averaging, 250hz // 2 = average two samples, 125hz // 3 = averaging three samples = 83.3 hz // 4 = averaging four samples = 62.5 hz // 5 = averaging 5 samples = 50hz // digital = 0 / 250hz, analog = 2 / 83.3 // reset swash for maximum movements - used for set-up static void heli_reset_swash() { // free up servo ranges g.heli_servo_1.radio_min = 1000; g.heli_servo_1.radio_max = 2000; g.heli_servo_2.radio_min = 1000; g.heli_servo_2.radio_max = 2000; g.heli_servo_3.radio_min = 1000; g.heli_servo_3.radio_max = 2000; // pitch factors heli_pitchFactor[CH_1] = cos(radians(g.heli_servo1_pos - g.heli_phase_angle)); heli_pitchFactor[CH_2] = cos(radians(g.heli_servo2_pos - g.heli_phase_angle)); heli_pitchFactor[CH_3] = cos(radians(g.heli_servo3_pos - g.heli_phase_angle)); // roll factors heli_rollFactor[CH_1] = cos(radians(g.heli_servo1_pos + 90 - g.heli_phase_angle)); heli_rollFactor[CH_2] = cos(radians(g.heli_servo2_pos + 90 - g.heli_phase_angle)); heli_rollFactor[CH_3] = cos(radians(g.heli_servo3_pos + 90 - g.heli_phase_angle)); // set throttle scaling heli_collective_scalar = ((float)(g.rc_3.radio_max - g.rc_3.radio_min))/1000.0; // we must be in set-up mode so mark swash as uninitialised heli_swash_initialised = false; } // initialise the swash static void heli_init_swash() { int i; // swash servo initialisation g.heli_servo_1.set_range(0,1000); g.heli_servo_2.set_range(0,1000); g.heli_servo_3.set_range(0,1000); g.heli_servo_4.set_angle(4500); // ensure g.heli_coll values are reasonable if( g.heli_collective_min >= g.heli_collective_max ) { g.heli_collective_min = 1000; g.heli_collective_max = 2000; } g.heli_collective_mid = constrain(g.heli_collective_mid, g.heli_collective_min, g.heli_collective_max); // calculate throttle mid point heli_throttle_mid = ((float)(g.heli_collective_mid-g.heli_collective_min))/((float)(g.heli_collective_max-g.heli_collective_min))*1000.0; // determine scalar throttle input heli_collective_scalar = ((float)(g.heli_collective_max-g.heli_collective_min))/1000.0; // pitch factors heli_pitchFactor[CH_1] = cos(radians(g.heli_servo1_pos - g.heli_phase_angle)); heli_pitchFactor[CH_2] = cos(radians(g.heli_servo2_pos - g.heli_phase_angle)); heli_pitchFactor[CH_3] = cos(radians(g.heli_servo3_pos - g.heli_phase_angle)); // roll factors heli_rollFactor[CH_1] = cos(radians(g.heli_servo1_pos + 90 - g.heli_phase_angle)); heli_rollFactor[CH_2] = cos(radians(g.heli_servo2_pos + 90 - g.heli_phase_angle)); heli_rollFactor[CH_3] = cos(radians(g.heli_servo3_pos + 90 - g.heli_phase_angle)); // servo min/max values g.heli_servo_1.radio_min = 1000; g.heli_servo_1.radio_max = 2000; g.heli_servo_2.radio_min = 1000; g.heli_servo_2.radio_max = 2000; g.heli_servo_3.radio_min = 1000; g.heli_servo_3.radio_max = 2000; // reset the servo averaging for( i=0; i<=3; i++ ) heli_servo_out[i] = 0; // double check heli_servo_averaging is reasonable if( g.heli_servo_averaging < 0 || g.heli_servo_averaging > 5 ) { g.heli_servo_averaging = 0; g.heli_servo_averaging.save(); } // mark swash as initialised heli_swash_initialised = true; } static void heli_move_servos_to_mid() { // call multiple times to force through the servo averaging for( int i=0; i<5; i++ ) { heli_move_swash(0,0,500,0); delay(20); } } // // heli_move_swash - moves swash plate to attitude of parameters passed in // - expected ranges: // roll : -4500 ~ 4500 // pitch: -4500 ~ 4500 // collective: 0 ~ 1000 // yaw: -4500 ~ 4500 // static void heli_move_swash(int roll_out, int pitch_out, int coll_out, int yaw_out) { int yaw_offset = 0; int coll_out_scaled; if( g.heli_servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)? // check if we need to freeup the swash if( heli_swash_initialised ) { heli_reset_swash(); } coll_out_scaled = coll_out * heli_collective_scalar + g.rc_3.radio_min - 1000; }else{ // regular flight mode // check if we need to reinitialise the swash if( !heli_swash_initialised ) { heli_init_swash(); } // ensure values are acceptable: roll_out = constrain(roll_out, (int)-g.heli_roll_max, (int)g.heli_roll_max); pitch_out = constrain(pitch_out, (int)-g.heli_pitch_max, (int)g.heli_pitch_max); coll_out = constrain(coll_out, 0, 1000); coll_out_scaled = coll_out * heli_collective_scalar + g.heli_collective_min - 1000; // rescale roll_out and pitch-out into the min and max ranges to provide linear motion // across the input range instead of stopping when the input hits the constrain value // these calculations are based on an assumption of the user specified roll_max and pitch_max // coming into this equation at 4500 or less, and based on the original assumption of the // total g.heli_servo_x.servo_out range being -4500 to 4500. roll_out = (-g.heli_roll_max + (float)( 2 * g.heli_roll_max * (roll_out + 4500.0)/9000.0)); pitch_out = (-g.heli_pitch_max + (float)(2 * g.heli_pitch_max * (pitch_out + 4500.0)/9000.0)); // rudder feed forward based on collective #if HIL_MODE == HIL_MODE_DISABLED // don't do rudder feed forward in simulator if( !g.heli_ext_gyro_enabled ) { yaw_offset = g.heli_collective_yaw_effect * abs(coll_out_scaled - g.heli_collective_mid); } #endif } // swashplate servos g.heli_servo_1.servo_out = (heli_rollFactor[CH_1] * roll_out + heli_pitchFactor[CH_1] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_1.radio_trim-1500); g.heli_servo_2.servo_out = (heli_rollFactor[CH_2] * roll_out + heli_pitchFactor[CH_2] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_2.radio_trim-1500); g.heli_servo_3.servo_out = (heli_rollFactor[CH_3] * roll_out + heli_pitchFactor[CH_3] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_3.radio_trim-1500); g.heli_servo_4.servo_out = yaw_out + yaw_offset; // use servo_out to calculate pwm_out and radio_out g.heli_servo_1.calc_pwm(); g.heli_servo_2.calc_pwm(); g.heli_servo_3.calc_pwm(); g.heli_servo_4.calc_pwm(); // add the servo values to the averaging heli_servo_out[0] += g.heli_servo_1.radio_out; heli_servo_out[1] += g.heli_servo_2.radio_out; heli_servo_out[2] += g.heli_servo_3.radio_out; heli_servo_out[3] += g.heli_servo_4.radio_out; heli_servo_out_count++; // is it time to move the servos? if( heli_servo_out_count >= g.heli_servo_averaging ) { // average the values if necessary if( g.heli_servo_averaging >= 2 ) { heli_servo_out[0] /= g.heli_servo_averaging; heli_servo_out[1] /= g.heli_servo_averaging; heli_servo_out[2] /= g.heli_servo_averaging; heli_servo_out[3] /= g.heli_servo_averaging; } // actually move the servos APM_RC.OutputCh(CH_1, heli_servo_out[0]); APM_RC.OutputCh(CH_2, heli_servo_out[1]); APM_RC.OutputCh(CH_3, heli_servo_out[2]); APM_RC.OutputCh(CH_4, heli_servo_out[3]); // output gyro value if( g.heli_ext_gyro_enabled ) { APM_RC.OutputCh(CH_7, g.heli_ext_gyro_gain); } #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); #endif // reset the averaging heli_servo_out_count = 0; heli_servo_out[0] = 0; heli_servo_out[1] = 0; heli_servo_out[2] = 0; heli_servo_out[3] = 0; } } static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4), g.rc_speed ); #endif } static void motors_output_enable() { APM_RC.enable_out(CH_1); APM_RC.enable_out(CH_2); APM_RC.enable_out(CH_3); APM_RC.enable_out(CH_4); APM_RC.enable_out(CH_5); APM_RC.enable_out(CH_6); APM_RC.enable_out(CH_7); APM_RC.enable_out(CH_8); } // these are not really motors, they're servos but we don't rename the function because it fits with the rest of the code better static void output_motors_armed() { // if manual override (i.e. when setting up swash), pass pilot commands straight through to swash if( g.heli_servo_manual == 1 ) { g.rc_1.servo_out = g.rc_1.control_in; g.rc_2.servo_out = g.rc_2.control_in; g.rc_3.servo_out = g.rc_3.control_in; g.rc_4.servo_out = g.rc_4.control_in; } //static int counter = 0; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); heli_move_swash( g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.servo_out, g.rc_4.servo_out ); } // for helis - armed or disarmed we allow servos to move static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle, remove safety motor_auto_armed = true; } output_motors_armed(); } static void output_motor_test() { } // heli_angle_boost - adds a boost depending on roll/pitch values // equivalent of quad's angle_boost function // throttle value should be 0 ~ 1000 static int16_t heli_get_angle_boost(int throttle) { float angle_boost_factor = cos_pitch_x * cos_roll_x; angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); int throttle_above_mid = max(throttle - heli_throttle_mid,0); return throttle + throttle_above_mid*angle_boost_factor; } #endif // HELI_FRAME