/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef __AP_AHRS_H__ #define __AP_AHRS_H__ /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AHRS (Attitude Heading Reference System) interface for ArduPilot * */ #include #include #include #include #include #include #include #include // Copter defaults to EKF on by default, all others off #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) #define AHRS_EKF_USE_DEFAULT 1 #else #define AHRS_EKF_USE_DEFAULT 0 #endif #define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees #define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter #define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter enum AHRS_VehicleClass { AHRS_VEHICLE_UNKNOWN, AHRS_VEHICLE_GROUND, AHRS_VEHICLE_COPTER, AHRS_VEHICLE_FIXED_WING, }; class AP_AHRS { public: // Constructor AP_AHRS(AP_InertialSensor &ins, AP_Baro &baro, AP_GPS &gps) : roll(0.0f), pitch(0.0f), yaw(0.0f), roll_sensor(0), pitch_sensor(0), yaw_sensor(0), _vehicle_class(AHRS_VEHICLE_UNKNOWN), _compass(NULL), _airspeed(NULL), _compass_last_update(0), _ins(ins), _baro(baro), _gps(gps), _cos_roll(1.0f), _cos_pitch(1.0f), _cos_yaw(1.0f), _sin_roll(0.0f), _sin_pitch(0.0f), _sin_yaw(0.0f), _active_accel_instance(0) { // load default values from var_info table AP_Param::setup_object_defaults(this, var_info); // base the ki values by the sensors maximum drift // rate. The APM2 has gyros which are much less drift // prone than the APM1, so we should have a lower ki, // which will make us less prone to increasing omegaI // incorrectly due to sensor noise _gyro_drift_limit = ins.get_gyro_drift_rate(); // enable centrifugal correction by default _flags.correct_centrifugal = true; // start off with armed flag true _flags.armed = true; // initialise _home _home.options = 0; _home.alt = 0; _home.lng = 0; _home.lat = 0; } // empty virtual destructor virtual ~AP_AHRS() {} // init sets up INS board orientation virtual void init() { set_orientation(); }; // Accessors void set_fly_forward(bool b) { _flags.fly_forward = b; } bool get_fly_forward(void) const { return _flags.fly_forward; } AHRS_VehicleClass get_vehicle_class(void) const { return _vehicle_class; } void set_vehicle_class(AHRS_VehicleClass vclass) { _vehicle_class = vclass; } void set_wind_estimation(bool b) { _flags.wind_estimation = b; } void set_compass(Compass *compass) { _compass = compass; set_orientation(); } const Compass* get_compass() const { return _compass; } // allow for runtime change of orientation // this makes initial config easier void set_orientation() { _ins.set_board_orientation((enum Rotation)_board_orientation.get()); if (_compass != NULL) { _compass->set_board_orientation((enum Rotation)_board_orientation.get()); } } void set_airspeed(AP_Airspeed *airspeed) { _airspeed = airspeed; } const AP_Airspeed *get_airspeed(void) const { return _airspeed; } const AP_GPS &get_gps() const { return _gps; } const AP_InertialSensor &get_ins() const { return _ins; } const AP_Baro &get_baro() const { return _baro; } // accelerometer values in the earth frame in m/s/s virtual const Vector3f &get_accel_ef(uint8_t i) const { return _accel_ef[i]; } virtual const Vector3f &get_accel_ef(void) const { return get_accel_ef(_ins.get_primary_accel()); } // blended accelerometer values in the earth frame in m/s/s virtual const Vector3f &get_accel_ef_blended(void) const { return _accel_ef_blended; } // get yaw rate in earth frame in radians/sec float get_yaw_rate_earth(void) const { return get_gyro() * get_dcm_matrix().c; } // Methods virtual void update(void) = 0; // Euler angles (radians) float roll; float pitch; float yaw; // integer Euler angles (Degrees * 100) int32_t roll_sensor; int32_t pitch_sensor; int32_t yaw_sensor; // return a smoothed and corrected gyro vector virtual const Vector3f &get_gyro(void) const = 0; // return the current estimate of the gyro drift virtual const Vector3f &get_gyro_drift(void) const = 0; // reset the current gyro drift estimate // should be called if gyro offsets are recalculated virtual void reset_gyro_drift(void) = 0; // reset the current attitude, used on new IMU calibration virtual void reset(bool recover_eulers=false) = 0; // reset the current attitude, used on new IMU calibration virtual void reset_attitude(const float &roll, const float &pitch, const float &yaw) = 0; // return the average size of the roll/pitch error estimate // since last call virtual float get_error_rp(void) = 0; // return the average size of the yaw error estimate // since last call virtual float get_error_yaw(void) = 0; // return a DCM rotation matrix representing our current // attitude virtual const Matrix3f &get_dcm_matrix(void) const = 0; // get our current position estimate. Return true if a position is available, // otherwise false. This call fills in lat, lng and alt virtual bool get_position(struct Location &loc) const = 0; // return a wind estimation vector, in m/s virtual Vector3f wind_estimate(void) = 0; // return an airspeed estimate if available. return true // if we have an estimate virtual bool airspeed_estimate(float *airspeed_ret) const; // return a true airspeed estimate (navigation airspeed) if // available. return true if we have an estimate bool airspeed_estimate_true(float *airspeed_ret) const { if (!airspeed_estimate(airspeed_ret)) { return false; } *airspeed_ret *= get_EAS2TAS(); return true; } // get apparent to true airspeed ratio float get_EAS2TAS(void) const { if (_airspeed) { return _airspeed->get_EAS2TAS(); } return 1.0f; } // return true if airspeed comes from an airspeed sensor, as // opposed to an IMU estimate bool airspeed_sensor_enabled(void) const { return _airspeed != NULL && _airspeed->use(); } // return a ground vector estimate in meters/second, in North/East order virtual Vector2f groundspeed_vector(void); // return a ground velocity in meters/second, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_velocity_NED(Vector3f &vec) const { return false; } // return a position relative to home in meters, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_relative_position_NED(Vector3f &vec) const { return false; } // return ground speed estimate in meters/second. Used by ground vehicles. float groundspeed(void) const { if (_gps.status() <= AP_GPS::NO_FIX) { return 0.0f; } return _gps.ground_speed(); } // return true if we will use compass for yaw virtual bool use_compass(void) { return _compass && _compass->use_for_yaw(); } // return true if yaw has been initialised bool yaw_initialised(void) const { return _flags.have_initial_yaw; } // set the fast gains flag void set_fast_gains(bool setting) { _flags.fast_ground_gains = setting; } // set the correct centrifugal flag // allows arducopter to disable corrections when disarmed void set_correct_centrifugal(bool setting) { _flags.correct_centrifugal = setting; } // get the correct centrifugal flag bool get_correct_centrifugal(void) const { return _flags.correct_centrifugal; } // set the armed flag // allows EKF enter static mode when disarmed void set_armed(bool setting) { _flags.armed = setting; } // get the armed flag bool get_armed(void) const { return _flags.armed; } // get trim const Vector3f &get_trim() const { return _trim.get(); } // set trim virtual void set_trim(Vector3f new_trim); // add_trim - adjust the roll and pitch trim up to a total of 10 degrees virtual void add_trim(float roll_in_radians, float pitch_in_radians, bool save_to_eeprom = true); // helper trig value accessors float cos_roll() const { return _cos_roll; } float cos_pitch() const { return _cos_pitch; } float cos_yaw() const { return _cos_yaw; } float sin_roll() const { return _sin_roll; } float sin_pitch() const { return _sin_pitch; } float sin_yaw() const { return _sin_yaw; } // for holding parameters static const struct AP_Param::GroupInfo var_info[]; // these are public for ArduCopter AP_Float _kp_yaw; AP_Float _kp; AP_Float gps_gain; // return secondary attitude solution if available, as eulers in radians virtual bool get_secondary_attitude(Vector3f &eulers) { return false; } // return secondary position solution if available virtual bool get_secondary_position(struct Location &loc) { return false; } // get the home location. This is const to prevent any changes to // home without telling AHRS about the change const struct Location &get_home(void) const { return _home; } // set the home location in 10e7 degrees. This should be called // when the vehicle is at this position. It is assumed that the // current barometer and GPS altitudes correspond to this altitude virtual void set_home(const Location &loc) = 0; // return true if the AHRS object supports inertial navigation, // with very accurate position and velocity virtual bool have_inertial_nav(void) const { return false; } // return the active accelerometer instance uint8_t get_active_accel_instance(void) const { return _active_accel_instance; } // is the AHRS subsystem healthy? virtual bool healthy(void) = 0; // true if the AHRS has completed initialisation virtual bool initialised(void) const { return true; }; protected: AHRS_VehicleClass _vehicle_class; // settable parameters AP_Float beta; AP_Int8 _gps_use; AP_Int8 _wind_max; AP_Int8 _board_orientation; AP_Int8 _gps_minsats; AP_Int8 _gps_delay; AP_Int8 _ekf_use; // flags structure struct ahrs_flags { uint8_t have_initial_yaw : 1; // whether the yaw value has been intialised with a reference uint8_t fast_ground_gains : 1; // should we raise the gain on the accelerometers for faster convergence, used when disarmed for ArduCopter uint8_t fly_forward : 1; // 1 if we can assume the aircraft will be flying forward on its X axis uint8_t correct_centrifugal : 1; // 1 if we should correct for centrifugal forces (allows arducopter to turn this off when motors are disarmed) uint8_t wind_estimation : 1; // 1 if we should do wind estimation uint8_t armed : 1; // 1 if we are armed for flight } _flags; // update_trig - recalculates _cos_roll, _cos_pitch, etc based on latest attitude // should be called after _dcm_matrix is updated void update_trig(void); // update roll_sensor, pitch_sensor and yaw_sensor void update_cd_values(void); // pointer to compass object, if available Compass * _compass; // pointer to airspeed object, if available AP_Airspeed * _airspeed; // time in microseconds of last compass update uint32_t _compass_last_update; // note: we use ref-to-pointer here so that our caller can change the GPS without our noticing // IMU under us without our noticing. AP_InertialSensor &_ins; AP_Baro &_baro; const AP_GPS &_gps; // a vector to capture the difference between the controller and body frames AP_Vector3f _trim; // the limit of the gyro drift claimed by the sensors, in // radians/s/s float _gyro_drift_limit; // accelerometer values in the earth frame in m/s/s Vector3f _accel_ef[INS_MAX_INSTANCES]; Vector3f _accel_ef_blended; // Declare filter states for HPF and LPF used by complementary // filter in AP_AHRS::groundspeed_vector Vector2f _lp; // ground vector low-pass filter Vector2f _hp; // ground vector high-pass filter Vector2f _lastGndVelADS; // previous HPF input // reference position for NED positions struct Location _home; // helper trig variables float _cos_roll, _cos_pitch, _cos_yaw; float _sin_roll, _sin_pitch, _sin_yaw; // which accelerometer instance is active uint8_t _active_accel_instance; }; #include #include #endif // __AP_AHRS_H__