/* Definition of functions used to provide a backup estimate of yaw angle that doesn't use a magnetometer. Uses a bank of 3-state EKF's organised as a Guassian sum filter where states are velocity N,E (m/s) and yaw angle (rad) Written by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_NavEKF/EKFGSF_yaw.h" #include #include #include EKFGSF_yaw::EKFGSF_yaw() {}; void EKFGSF_yaw::update(const Vector3F &delAng, const Vector3F &delVel, const ftype delAngDT, const ftype delVelDT, bool runEKF, ftype TAS) { // copy to class variables delta_angle = delAng; delta_velocity = delVel; angle_dt = delAngDT; velocity_dt = delVelDT; run_ekf_gsf = runEKF; true_airspeed = TAS; // Calculate a low pass filtered acceleration vector that will be used to keep the AHRS tilt aligned // The time constant of the filter is a fixed ratio relative to the time constant of the AHRS tilt correction loop const ftype filter_coef = fminF(EKFGSF_accelFiltRatio * delVelDT * EKFGSF_tiltGain, 1.0f); const Vector3F accel = delVel / fmaxF(delVelDT, 0.001f); ahrs_accel = ahrs_accel * (1.0f - filter_coef) + accel * filter_coef; // Iniitialise states and only when acceleration is close to 1g to prevent vehicle movement casuing a large initial tilt error if (!ahrs_tilt_aligned) { const ftype accel_norm_sq = accel.length_squared(); const ftype upper_accel_limit = GRAVITY_MSS * 1.1f; const ftype lower_accel_limit = GRAVITY_MSS * 0.9f; const bool ok_to_align = ((accel_norm_sq > lower_accel_limit * lower_accel_limit && accel_norm_sq < upper_accel_limit * upper_accel_limit)); if (ok_to_align) { alignTilt(); ahrs_tilt_aligned = true; ahrs_accel = accel; } return; } // Calculate common variables used by the AHRS prediction models ahrs_accel_norm = ahrs_accel.length(); // Calculate AHRS acceleration fusion gain using a quadratic weighting function that is unity at 1g // and zero at the min and max g limits. This reduces the effect of large g transients on the attitude // esitmates. ftype EKFGSF_ahrs_ng = ahrs_accel_norm / GRAVITY_MSS; if (EKFGSF_ahrs_ng > 1.0f) { if (is_positive(true_airspeed)) { // When flying in fixed wing mode we need to allow for more positive g due to coordinated turns // Gain varies from unity at 1g to zero at 2g accel_gain = EKFGSF_tiltGain * sq(2.0f - EKFGSF_ahrs_ng); } else if (accel_gain <= 1.5f) { // Gain varies from unity at 1g to zero at 1.5g accel_gain = EKFGSF_tiltGain * sq(3.0f - 2.0f * EKFGSF_ahrs_ng); } else { // Gain is zero above max g accel_gain = 0.0f; } } else if (accel_gain > 0.5f) { // Gain varies from zero at 0.5g to unity at 1g accel_gain = EKFGSF_tiltGain * sq(2.0f * EKFGSF_ahrs_ng - 1.0f); } else { // Gain is zero below min g accel_gain = 0.0f; } // Always run the AHRS prediction cycle for each model for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { predict(mdl_idx); } if (vel_fuse_running && !run_ekf_gsf) { vel_fuse_running = false; } // Calculate a composite yaw as a weighted average of the states for each model. // To avoid issues with angle wrapping, the yaw state is converted to a vector with legnth // equal to the weighting value before it is summed. Vector2F yaw_vector = {}; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { yaw_vector[0] += GSF.weights[mdl_idx] * cosF(EKF[mdl_idx].X[2]); yaw_vector[1] += GSF.weights[mdl_idx] * sinF(EKF[mdl_idx].X[2]); } GSF.yaw = atan2F(yaw_vector[1],yaw_vector[0]); // Example for future reference showing how a full GSF covariance matrix could be calculated if required /* memset(&GSF.P, 0, sizeof(GSF.P)); for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { ftype delta[3]; for (uint8_t row = 0; row < 3; row++) { delta[row] = EKF[mdl_idx].X[row] - GSF.X[row]; } for (uint8_t row = 0; row < 3; row++) { for (uint8_t col = 0; col < 3; col++) { GSF.P[row][col] += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[row][col] + delta[row] * delta[col]); } } } */ GSF.yaw_variance = 0.0f; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { ftype yawDelta = wrap_PI(EKF[mdl_idx].X[2] - GSF.yaw); GSF.yaw_variance += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[2][2] + sq(yawDelta)); } } void EKFGSF_yaw::fuseVelData(const Vector2F &vel, const ftype velAcc) { // convert reported accuracy to a variance, but limit lower value to protect algorithm stability const ftype velObsVar = sq(fmaxF(velAcc, 0.5f)); // The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference if (run_ekf_gsf) { if (!vel_fuse_running) { // Perform in-flight alignment resetEKFGSF(); for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { // Use the firstGPS measurement to set the velocities and corresponding variances EKF[mdl_idx].X[0] = vel[0]; EKF[mdl_idx].X[1] = vel[1]; EKF[mdl_idx].P[0][0] = velObsVar; EKF[mdl_idx].P[1][1] = velObsVar; } alignYaw(); vel_fuse_running = true; } else { ftype total_w = 0.0f; ftype newWeight[(uint8_t)N_MODELS_EKFGSF]; bool state_update_failed = false; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { // Update states and covariances using GPS NE velocity measurements fused as direct state observations if (!correct(mdl_idx, vel, velObsVar)) { state_update_failed = true; } } if (!state_update_failed) { // Calculate weighting for each model assuming a normal error distribution const ftype min_weight = 1e-5f; n_clips = 0; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) { newWeight[mdl_idx] = gaussianDensity(mdl_idx) * GSF.weights[mdl_idx]; if (newWeight[mdl_idx] < min_weight) { n_clips++; newWeight[mdl_idx] = min_weight; } total_w += newWeight[mdl_idx]; } // Normalise the sum of weights to unity // Reset the filters if all weights have underflowed due to excessive innovation variances if (vel_fuse_running && n_clips < N_MODELS_EKFGSF) { ftype total_w_inv = 1.0f / total_w; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { GSF.weights[mdl_idx] = newWeight[mdl_idx] * total_w_inv; } } else { resetEKFGSF(); } } } } } void EKFGSF_yaw::predictAHRS(const uint8_t mdl_idx) { // Generate attitude solution using simple complementary filter for the selected model // Calculate 'k' unit vector of earth frame rotated into body frame const Vector3F k(AHRS[mdl_idx].R[2][0], AHRS[mdl_idx].R[2][1], AHRS[mdl_idx].R[2][2]); // Calculate angular rate vector in rad/sec averaged across last sample interval Vector3F ang_rate_delayed_raw = delta_angle / angle_dt; // Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved). // During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward Vector3F tilt_error_gyro_correction = {}; // (rad/sec) if (accel_gain > 0.0f) { Vector3F accel = ahrs_accel; if (is_positive(true_airspeed)) { // Calculate centripetal acceleration in body frame from cross product of body rate and body frame airspeed vector // NOTE: this assumes X axis is aligned with airspeed vector Vector3F centripetal_accel_vec_bf = Vector3F(0.0f, ang_rate_delayed_raw[2] * true_airspeed, - ang_rate_delayed_raw[1] * true_airspeed); // Correct measured accel for centripetal acceleration accel -= centripetal_accel_vec_bf; } tilt_error_gyro_correction = (k % accel) * (accel_gain / ahrs_accel_norm); } // Gyro bias estimation const ftype gyro_bias_limit = radians(5.0f); const ftype spinRate = ang_rate_delayed_raw.length(); if (spinRate < 0.175f) { AHRS[mdl_idx].gyro_bias -= tilt_error_gyro_correction * (EKFGSF_gyroBiasGain * angle_dt); for (uint8_t i = 0; i < 3; i++) { AHRS[mdl_idx].gyro_bias[i] = constrain_ftype(AHRS[mdl_idx].gyro_bias[i], -gyro_bias_limit, gyro_bias_limit); } } // Calculate the corrected body frame rotation vector for the last sample interval and apply to the rotation matrix const Vector3F ahrs_delta_angle = delta_angle + (tilt_error_gyro_correction - AHRS[mdl_idx].gyro_bias) * angle_dt; AHRS[mdl_idx].R = updateRotMat(AHRS[mdl_idx].R, ahrs_delta_angle); } void EKFGSF_yaw::alignTilt() { // Rotation matrix is constructed directly from acceleration measurement and will be the same for // all models so only need to calculate it once. Assumptions are: // 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences. // 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity. // Calculate earth frame Down axis unit vector rotated into body frame Vector3F down_in_bf = -delta_velocity; down_in_bf.normalize(); // Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf' // * operator is overloaded to provide a dot product const Vector3F i_vec_bf(1.0f,0.0f,0.0f); Vector3F north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf * down_in_bf); north_in_bf.normalize(); // Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf' // % operator is overloaded to provide a cross product const Vector3F east_in_bf = down_in_bf % north_in_bf; // Each column in a rotation matrix from earth frame to body frame represents the projection of the // corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column. // We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body // frame are copied into corresponding rows instead to create the transpose. Matrix3F R; for (uint8_t col=0; col<3; col++) { R[0][col] = north_in_bf[col]; R[1][col] = east_in_bf[col]; R[2][col] = down_in_bf[col]; } // record alignment for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) { AHRS[mdl_idx].R = R; AHRS[mdl_idx].aligned = true; } } void EKFGSF_yaw::alignYaw() { // Align yaw angle for each model for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) { if (fabsF(AHRS[mdl_idx].R[2][0]) < fabsF(AHRS[mdl_idx].R[2][1])) { // get the roll, pitch, yaw estimates from the rotation matrix using a 321 Tait-Bryan rotation sequence ftype roll,pitch,yaw; AHRS[mdl_idx].R.to_euler(&roll, &pitch, &yaw); // set the yaw angle yaw = wrap_PI(EKF[mdl_idx].X[2]); // update the body to earth frame rotation matrix AHRS[mdl_idx].R.from_euler(roll, pitch, yaw); } else { // Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame Vector3F euler312 = AHRS[mdl_idx].R.to_euler312(); euler312[2] = wrap_PI(EKF[mdl_idx].X[2]); // first rotation (yaw) taken from EKF model state // update the body to earth frame rotation matrix AHRS[mdl_idx].R.from_euler312(euler312[0], euler312[1], euler312[2]); } } } // predict states and covariance for specified model index void EKFGSF_yaw::predict(const uint8_t mdl_idx) { // generate an attitude reference using IMU data predictAHRS(mdl_idx); // we don't start running the EKF part of the algorithm until there are regular velocity observations if (!vel_fuse_running) { return; } // Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock if (fabsF(AHRS[mdl_idx].R[2][0]) < fabsF(AHRS[mdl_idx].R[2][1])) { // use 321 Tait-Bryan rotation to define yaw state EKF[mdl_idx].X[2] = atan2F(AHRS[mdl_idx].R[1][0], AHRS[mdl_idx].R[0][0]); } else { // use 312 Tait-Bryan rotation to define yaw state EKF[mdl_idx].X[2] = atan2F(-AHRS[mdl_idx].R[0][1], AHRS[mdl_idx].R[1][1]); // first rotation (yaw) } // calculate delta velocity in a horizontal front-right frame const Vector3F del_vel_NED = AHRS[mdl_idx].R * delta_velocity; const ftype dvx = del_vel_NED[0] * cosF(EKF[mdl_idx].X[2]) + del_vel_NED[1] * sinF(EKF[mdl_idx].X[2]); const ftype dvy = - del_vel_NED[0] * sinF(EKF[mdl_idx].X[2]) + del_vel_NED[1] * cosF(EKF[mdl_idx].X[2]); // sum delta velocities in earth frame: EKF[mdl_idx].X[0] += del_vel_NED[0]; EKF[mdl_idx].X[1] += del_vel_NED[1]; // predict covariance - autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPupdate.txt // Local short variable name copies required for readability // Compiler might be smart enough to optimise these out const ftype P00 = EKF[mdl_idx].P[0][0]; const ftype P01 = EKF[mdl_idx].P[0][1]; const ftype P02 = EKF[mdl_idx].P[0][2]; const ftype P10 = EKF[mdl_idx].P[1][0]; const ftype P11 = EKF[mdl_idx].P[1][1]; const ftype P12 = EKF[mdl_idx].P[1][2]; const ftype P20 = EKF[mdl_idx].P[2][0]; const ftype P21 = EKF[mdl_idx].P[2][1]; const ftype P22 = EKF[mdl_idx].P[2][2]; // Use fixed values for delta velocity and delta angle process noise variances const ftype dvxVar = sq(EKFGSF_accelNoise * velocity_dt); // variance of forward delta velocity - (m/s)^2 const ftype dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2 const ftype dazVar = sq(EKFGSF_gyroNoise * angle_dt); // variance of yaw delta angle - rad^2 const ftype t2 = sinF(EKF[mdl_idx].X[2]); const ftype t3 = cosF(EKF[mdl_idx].X[2]); const ftype t4 = dvy*t3; const ftype t5 = dvx*t2; const ftype t6 = t4+t5; const ftype t8 = P22*t6; const ftype t7 = P02-t8; const ftype t9 = dvx*t3; const ftype t11 = dvy*t2; const ftype t10 = t9-t11; const ftype t12 = dvxVar*t2*t3; const ftype t13 = t2*t2; const ftype t14 = t3*t3; const ftype t15 = P22*t10; const ftype t16 = P12+t15; const ftype min_var = 1e-6f; EKF[mdl_idx].P[0][0] = fmaxF(P00-P20*t6+dvxVar*t14+dvyVar*t13-t6*t7, min_var); EKF[mdl_idx].P[0][1] = P01+t12-P21*t6+t7*t10-dvyVar*t2*t3; EKF[mdl_idx].P[0][2] = t7; EKF[mdl_idx].P[1][0] = P10+t12+P20*t10-t6*t16-dvyVar*t2*t3; EKF[mdl_idx].P[1][1] = fmaxF(P11+P21*t10+dvxVar*t13+dvyVar*t14+t10*t16, min_var); EKF[mdl_idx].P[1][2] = t16; EKF[mdl_idx].P[2][0] = P20-t8; EKF[mdl_idx].P[2][1] = P21+t15; EKF[mdl_idx].P[2][2] = fmaxF(P22+dazVar, min_var); // force symmetry forceSymmetry(mdl_idx); } // Update EKF states and covariance for specified model index using velocity measurement // Returns false if the sttae and covariance correction failed bool EKFGSF_yaw::correct(const uint8_t mdl_idx, const Vector2F &vel, const ftype velObsVar) { // calculate velocity observation innovations EKF[mdl_idx].innov[0] = EKF[mdl_idx].X[0] - vel[0]; EKF[mdl_idx].innov[1] = EKF[mdl_idx].X[1] - vel[1]; // copy covariance matrix to temporary variables const ftype P00 = EKF[mdl_idx].P[0][0]; const ftype P01 = EKF[mdl_idx].P[0][1]; const ftype P02 = EKF[mdl_idx].P[0][2]; const ftype P10 = EKF[mdl_idx].P[1][0]; const ftype P11 = EKF[mdl_idx].P[1][1]; const ftype P12 = EKF[mdl_idx].P[1][2]; const ftype P20 = EKF[mdl_idx].P[2][0]; const ftype P21 = EKF[mdl_idx].P[2][1]; const ftype P22 = EKF[mdl_idx].P[2][2]; // calculate innovation variance EKF[mdl_idx].S[0][0] = P00 + velObsVar; EKF[mdl_idx].S[1][1] = P11 + velObsVar; EKF[mdl_idx].S[0][1] = P01; EKF[mdl_idx].S[1][0] = P10; // Perform a chi-square innovation consistency test and calculate a compression scale factor that limits the magnitude of innovations to 5-sigma ftype S_det_inv = (EKF[mdl_idx].S[0][0]*EKF[mdl_idx].S[1][1] - EKF[mdl_idx].S[0][1]*EKF[mdl_idx].S[1][0]); ftype innov_comp_scale_factor = 1.0f; if (fabsF(S_det_inv) > 1E-6f) { // Calculate elements for innovation covariance inverse matrix assuming symmetry S_det_inv = 1.0f / S_det_inv; const ftype S_inv_NN = EKF[mdl_idx].S[1][1] * S_det_inv; const ftype S_inv_EE = EKF[mdl_idx].S[0][0] * S_det_inv; const ftype S_inv_NE = EKF[mdl_idx].S[0][1] * S_det_inv; // The following expression was derived symbolically from test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1] const ftype test_ratio = EKF[mdl_idx].innov[0]*(EKF[mdl_idx].innov[0]*S_inv_NN + EKF[mdl_idx].innov[1]*S_inv_NE) + EKF[mdl_idx].innov[1]*(EKF[mdl_idx].innov[0]*S_inv_NE + EKF[mdl_idx].innov[1]*S_inv_EE); // If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma // This protects from large measurement spikes if (test_ratio > 25.0f) { innov_comp_scale_factor = sqrtF(25.0f / test_ratio); } } else { // skip this fusion step because calculation is badly conditioned return false; } // calculate Kalman gain K and covariance matrix P // autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcK.txt // and https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPmat.txt const ftype t2 = P00*velObsVar; const ftype t3 = P11*velObsVar; const ftype t4 = velObsVar*velObsVar; const ftype t5 = P00*P11; const ftype t9 = P01*P10; const ftype t6 = t2+t3+t4+t5-t9; ftype t7; if (fabsF(t6) > 1e-6f) { t7 = 1.0f/t6; } else { // skip this fusion step return false; } const ftype t8 = P11+velObsVar; const ftype t10 = P00+velObsVar; ftype K[3][2]; K[0][0] = -P01*P10*t7+P00*t7*t8; K[0][1] = -P00*P01*t7+P01*t7*t10; K[1][0] = -P10*P11*t7+P10*t7*t8; K[1][1] = -P01*P10*t7+P11*t7*t10; K[2][0] = -P10*P21*t7+P20*t7*t8; K[2][1] = -P01*P20*t7+P21*t7*t10; const ftype t11 = P00*P01*t7; const ftype t15 = P01*t7*t10; const ftype t12 = t11-t15; const ftype t13 = P01*P10*t7; const ftype t16 = P00*t7*t8; const ftype t14 = t13-t16; const ftype t17 = t8*t12; const ftype t18 = P01*t14; const ftype t19 = t17+t18; const ftype t20 = t10*t14; const ftype t21 = P10*t12; const ftype t22 = t20+t21; const ftype t27 = P11*t7*t10; const ftype t23 = t13-t27; const ftype t24 = P10*P11*t7; const ftype t26 = P10*t7*t8; const ftype t25 = t24-t26; const ftype t28 = t8*t23; const ftype t29 = P01*t25; const ftype t30 = t28+t29; const ftype t31 = t10*t25; const ftype t32 = P10*t23; const ftype t33 = t31+t32; const ftype t34 = P01*P20*t7; const ftype t38 = P21*t7*t10; const ftype t35 = t34-t38; const ftype t36 = P10*P21*t7; const ftype t39 = P20*t7*t8; const ftype t37 = t36-t39; const ftype t40 = t8*t35; const ftype t41 = P01*t37; const ftype t42 = t40+t41; const ftype t43 = t10*t37; const ftype t44 = P10*t35; const ftype t45 = t43+t44; const ftype min_var = 1e-6f; EKF[mdl_idx].P[0][0] = fmaxF(P00-t12*t19-t14*t22, min_var); EKF[mdl_idx].P[0][1] = P01-t19*t23-t22*t25; EKF[mdl_idx].P[0][2] = P02-t19*t35-t22*t37; EKF[mdl_idx].P[1][0] = P10-t12*t30-t14*t33; EKF[mdl_idx].P[1][1] = fmaxF(P11-t23*t30-t25*t33, min_var); EKF[mdl_idx].P[1][2] = P12-t30*t35-t33*t37; EKF[mdl_idx].P[2][0] = P20-t12*t42-t14*t45; EKF[mdl_idx].P[2][1] = P21-t23*t42-t25*t45; EKF[mdl_idx].P[2][2] = fmaxF(P22-t35*t42-t37*t45, min_var); // force symmetry forceSymmetry(mdl_idx); // Apply state corrections and capture change in yaw angle const ftype yaw_prev = EKF[mdl_idx].X[2]; for (uint8_t obs_index = 0; obs_index < 2; obs_index++) { // apply the state corrections including the compression scale factor for (unsigned row = 0; row < 3; row++) { EKF[mdl_idx].X[row] -= K[row][obs_index] * EKF[mdl_idx].innov[obs_index] * innov_comp_scale_factor; } } const ftype yaw_delta = EKF[mdl_idx].X[2] - yaw_prev; // apply the change in yaw angle to the AHRS taking advantage of sparseness in the yaw rotation matrix const ftype cos_yaw = cosF(yaw_delta); const ftype sin_yaw = sinF(yaw_delta); ftype R_prev[2][3]; memcpy(&R_prev, &AHRS[mdl_idx].R, sizeof(R_prev)); // copy first two rows from 3x3 AHRS[mdl_idx].R[0][0] = R_prev[0][0] * cos_yaw - R_prev[1][0] * sin_yaw; AHRS[mdl_idx].R[0][1] = R_prev[0][1] * cos_yaw - R_prev[1][1] * sin_yaw; AHRS[mdl_idx].R[0][2] = R_prev[0][2] * cos_yaw - R_prev[1][2] * sin_yaw; AHRS[mdl_idx].R[1][0] = R_prev[0][0] * sin_yaw + R_prev[1][0] * cos_yaw; AHRS[mdl_idx].R[1][1] = R_prev[0][1] * sin_yaw + R_prev[1][1] * cos_yaw; AHRS[mdl_idx].R[1][2] = R_prev[0][2] * sin_yaw + R_prev[1][2] * cos_yaw; return true; } void EKFGSF_yaw::resetEKFGSF() { memset(&GSF, 0, sizeof(GSF)); vel_fuse_running = false; run_ekf_gsf = false; memset(&EKF, 0, sizeof(EKF)); const ftype yaw_increment = M_2PI / (ftype)N_MODELS_EKFGSF; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) { // evenly space initial yaw estimates in the region between +-Pi EKF[mdl_idx].X[2] = -M_PI + (0.5f * yaw_increment) + ((ftype)mdl_idx * yaw_increment); // All filter models start with the same weight GSF.weights[mdl_idx] = 1.0f / (ftype)N_MODELS_EKFGSF; // Use half yaw interval for yaw uncertainty as that is the maximum that the best model can be away from truth GSF.yaw_variance = sq(0.5f * yaw_increment); EKF[mdl_idx].P[2][2] = GSF.yaw_variance; } } // returns the probability of a selected model output assuming a gaussian error distribution ftype EKFGSF_yaw::gaussianDensity(const uint8_t mdl_idx) const { const ftype t2 = EKF[mdl_idx].S[0][0] * EKF[mdl_idx].S[1][1]; const ftype t5 = EKF[mdl_idx].S[0][1] * EKF[mdl_idx].S[1][0]; const ftype t3 = t2 - t5; // determinant const ftype t4 = 1.0f / MAX(t3, 1e-12f); // determinant inverse // inv(S) ftype invMat[2][2]; invMat[0][0] = t4 * EKF[mdl_idx].S[1][1]; invMat[1][1] = t4 * EKF[mdl_idx].S[0][0]; invMat[0][1] = - t4 * EKF[mdl_idx].S[0][1]; invMat[1][0] = - t4 * EKF[mdl_idx].S[1][0]; // inv(S) * innovation ftype tempVec[2]; tempVec[0] = invMat[0][0] * EKF[mdl_idx].innov[0] + invMat[0][1] * EKF[mdl_idx].innov[1]; tempVec[1] = invMat[1][0] * EKF[mdl_idx].innov[0] + invMat[1][1] * EKF[mdl_idx].innov[1]; // transpose(innovation) * inv(S) * innovation ftype normDist = tempVec[0] * EKF[mdl_idx].innov[0] + tempVec[1] * EKF[mdl_idx].innov[1]; // convert from a normalised variance to a probability assuming a Gaussian distribution normDist = expf(-0.5f * normDist); normDist *= sqrtF(t4)/ M_2PI; return normDist; } void EKFGSF_yaw::forceSymmetry(const uint8_t mdl_idx) { ftype P01 = 0.5f * (EKF[mdl_idx].P[0][1] + EKF[mdl_idx].P[1][0]); ftype P02 = 0.5f * (EKF[mdl_idx].P[0][2] + EKF[mdl_idx].P[2][0]); ftype P12 = 0.5f * (EKF[mdl_idx].P[1][2] + EKF[mdl_idx].P[2][1]); EKF[mdl_idx].P[0][1] = EKF[mdl_idx].P[1][0] = P01; EKF[mdl_idx].P[0][2] = EKF[mdl_idx].P[2][0] = P02; EKF[mdl_idx].P[1][2] = EKF[mdl_idx].P[2][1] = P12; } // Apply a body frame delta angle to the body to earth frame rotation matrix using a small angle approximation Matrix3F EKFGSF_yaw::updateRotMat(const Matrix3F &R, const Vector3F &g) const { Matrix3F ret = R; ret[0][0] += R[0][1] * g[2] - R[0][2] * g[1]; ret[0][1] += R[0][2] * g[0] - R[0][0] * g[2]; ret[0][2] += R[0][0] * g[1] - R[0][1] * g[0]; ret[1][0] += R[1][1] * g[2] - R[1][2] * g[1]; ret[1][1] += R[1][2] * g[0] - R[1][0] * g[2]; ret[1][2] += R[1][0] * g[1] - R[1][1] * g[0]; ret[2][0] += R[2][1] * g[2] - R[2][2] * g[1]; ret[2][1] += R[2][2] * g[0] - R[2][0] * g[2]; ret[2][2] += R[2][0] * g[1] - R[2][1] * g[0]; // Renormalise rows ftype rowLengthSq; for (uint8_t r = 0; r < 3; r++) { rowLengthSq = ret[r][0] * ret[r][0] + ret[r][1] * ret[r][1] + ret[r][2] * ret[r][2]; if (is_positive(rowLengthSq)) { // Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0 const ftype rowLengthInv = 1.5f - 0.5f * rowLengthSq; Vector3F &row = ret[r]; row *= rowLengthInv; } } return ret; } // returns true if a yaw estimate is available. yaw and its variance // is returned, as well as the number of models which are *not* being // used to snthesise the yaw. bool EKFGSF_yaw::getYawData(ftype &yaw, ftype &yawVariance, uint8_t *_n_clips) const { if (!vel_fuse_running) { return false; } yaw = GSF.yaw; yawVariance = GSF.yaw_variance; if (_n_clips != nullptr) { *_n_clips = n_clips; } return true; } bool EKFGSF_yaw::getVelInnovLength(ftype &velInnovLength) const { if (!vel_fuse_running) { return false; } velInnovLength = 0.0f; for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) { velInnovLength += GSF.weights[mdl_idx] * sqrtF((sq(EKF[mdl_idx].innov[0]) + sq(EKF[mdl_idx].innov[1]))); } return true; } void EKFGSF_yaw::setGyroBias(Vector3f &gyroBias) { for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) { AHRS[mdl_idx].gyro_bias = gyroBias.toftype(); } }