#include #include #include "AP_Mount.h" #if HAL_MOUNT_ENABLED #include "AP_Mount_Backend.h" #include "AP_Mount_Servo.h" #include "AP_Mount_SoloGimbal.h" #include "AP_Mount_Alexmos.h" #include "AP_Mount_SToRM32.h" #include "AP_Mount_SToRM32_serial.h" #include "AP_Mount_Gremsy.h" #include "AP_Mount_Siyi.h" #include "AP_Mount_Scripting.h" #include "AP_Mount_Xacti.h" #include "AP_Mount_Viewpro.h" #include "AP_Mount_Topotek.h" #include #include #include #include const AP_Param::GroupInfo AP_Mount::var_info[] = { // @Group: 1 // @Path: AP_Mount_Params.cpp AP_SUBGROUPINFO(_params[0], "1", 43, AP_Mount, AP_Mount_Params), #if AP_MOUNT_MAX_INSTANCES > 1 // @Group: 2 // @Path: AP_Mount_Params.cpp AP_SUBGROUPINFO(_params[1], "2", 44, AP_Mount, AP_Mount_Params), #endif AP_GROUPEND }; AP_Mount::AP_Mount() { if (_singleton != nullptr) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("Mount must be singleton"); #endif return; } _singleton = this; AP_Param::setup_object_defaults(this, var_info); } // init - detect and initialise all mounts void AP_Mount::init() { // check init has not been called before if (_num_instances != 0) { return; } // perform any required parameter conversion convert_params(); // primary is reset to the first instantiated mount bool primary_set = false; // keep track of number of serial instances for initialisation uint8_t serial_instance = 0; // create each instance for (uint8_t instance=0; instanceinit(); set_mode_to_default(instance); } } (void)serial_instance; } // update - give mount opportunity to update servos. should be called at 10hz or higher void AP_Mount::update() { // update each instance for (uint8_t instance=0; instanceupdate(); } } } // used for gimbals that need to read INS data at full rate void AP_Mount::update_fast() { // update each instance for (uint8_t instance=0; instanceupdate_fast(); } } } // get_mount_type - returns the type of mount AP_Mount::Type AP_Mount::get_mount_type(uint8_t instance) const { if (instance >= AP_MOUNT_MAX_INSTANCES) { return Type::None; } return (Type)_params[instance].type.get(); } // has_pan_control - returns true if the mount has yaw control (required for copters) bool AP_Mount::has_pan_control(uint8_t instance) const { const auto *backend = get_instance(instance); if (backend == nullptr) { return false; } // ask backend if it support pan return backend->has_pan_control(); } // get_mode - returns current mode of mount (i.e. Retracted, Neutral, RC_Targeting, GPS Point) MAV_MOUNT_MODE AP_Mount::get_mode(uint8_t instance) const { const auto *backend = get_instance(instance); if (backend == nullptr) { return MAV_MOUNT_MODE_RETRACT; } // ask backend its mode return backend->get_mode(); } // set_mode_to_default - restores the mode to it's default mode held in the MNTx__DEFLT_MODE parameter // this operation requires 60us on a Pixhawk/PX4 void AP_Mount::set_mode_to_default(uint8_t instance) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->set_mode((enum MAV_MOUNT_MODE)_params[instance].default_mode.get()); } // set_mode - sets mount's mode void AP_Mount::set_mode(uint8_t instance, enum MAV_MOUNT_MODE mode) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } // call backend's set_mode backend->set_mode(mode); } // set yaw_lock used in RC_TARGETING mode. If true, the gimbal's yaw target is maintained in earth-frame meaning it will lock onto an earth-frame heading (e.g. North) // If false (aka "follow") the gimbal's yaw is maintained in body-frame meaning it will rotate with the vehicle void AP_Mount::set_yaw_lock(uint8_t instance, bool yaw_lock) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } // call backend's set_yaw_lock backend->set_yaw_lock(yaw_lock); } // set angle target in degrees // roll and pitch are in earth-frame // yaw_is_earth_frame (aka yaw_lock) should be true if yaw angle is earth-frame, false if body-frame void AP_Mount::set_angle_target(uint8_t instance, float roll_deg, float pitch_deg, float yaw_deg, bool yaw_is_earth_frame) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } // send command to backend backend->set_angle_target(roll_deg, pitch_deg, yaw_deg, yaw_is_earth_frame); } // sets rate target in deg/s // yaw_lock should be true if the yaw rate is earth-frame, false if body-frame (e.g. rotates with body of vehicle) void AP_Mount::set_rate_target(uint8_t instance, float roll_degs, float pitch_degs, float yaw_degs, bool yaw_lock) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } // send command to backend backend->set_rate_target(roll_degs, pitch_degs, yaw_degs, yaw_lock); } MAV_RESULT AP_Mount::handle_command_do_mount_configure(const mavlink_command_int_t &packet) { auto *backend = get_primary(); if (backend == nullptr) { return MAV_RESULT_FAILED; } backend->set_mode((MAV_MOUNT_MODE)packet.param1); return MAV_RESULT_ACCEPTED; } MAV_RESULT AP_Mount::handle_command_do_mount_control(const mavlink_command_int_t &packet) { auto *backend = get_primary(); if (backend == nullptr) { return MAV_RESULT_FAILED; } return backend->handle_command_do_mount_control(packet); } MAV_RESULT AP_Mount::handle_command_do_gimbal_manager_pitchyaw(const mavlink_command_int_t &packet) { AP_Mount_Backend *backend; // check gimbal device id. 0 is primary, 1 is 1st gimbal, 2 is // 2nd gimbal, etc const uint8_t instance = packet.z; if (instance == 0) { backend = get_primary(); } else { backend = get_instance(instance - 1); } if (backend == nullptr) { return MAV_RESULT_FAILED; } // check flags for change to RETRACT const uint32_t flags = packet.x; if ((flags & GIMBAL_MANAGER_FLAGS_RETRACT) > 0) { backend->set_mode(MAV_MOUNT_MODE_RETRACT); return MAV_RESULT_ACCEPTED; } // check flags for change to NEUTRAL if ((flags & GIMBAL_MANAGER_FLAGS_NEUTRAL) > 0) { backend->set_mode(MAV_MOUNT_MODE_NEUTRAL); return MAV_RESULT_ACCEPTED; } // param1 : pitch_angle (in degrees) // param2 : yaw angle (in degrees) const float pitch_angle_deg = packet.param1; const float yaw_angle_deg = packet.param2; if (!isnan(pitch_angle_deg) && !isnan(yaw_angle_deg)) { backend->set_angle_target(0, pitch_angle_deg, yaw_angle_deg, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return MAV_RESULT_ACCEPTED; } // param3 : pitch_rate (in deg/s) // param4 : yaw rate (in deg/s) const float pitch_rate_degs = packet.param3; const float yaw_rate_degs = packet.param4; if (!isnan(pitch_rate_degs) && !isnan(yaw_rate_degs)) { backend->set_rate_target(0, pitch_rate_degs, yaw_rate_degs, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return MAV_RESULT_ACCEPTED; } // if neither angles nor rates were provided set the RC_TARGETING yaw lock state if (isnan(pitch_angle_deg) && isnan(yaw_angle_deg) && isnan(pitch_rate_degs) && isnan(yaw_rate_degs)) { backend->set_yaw_lock(flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } // handle mav_cmd_do_gimbal_manager_configure for deconflicting different mavlink message senders MAV_RESULT AP_Mount::handle_command_do_gimbal_manager_configure(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { AP_Mount_Backend *backend; // check gimbal device id. 0 is primary, 1 is 1st gimbal, 2 is 2nd gimbal, etc const uint8_t instance = packet.z; if (instance == 0) { backend = get_primary(); } else { backend = get_instance(instance - 1); } if (backend == nullptr) { return MAV_RESULT_FAILED; } return backend->handle_command_do_gimbal_manager_configure(packet, msg); } void AP_Mount::handle_gimbal_manager_set_attitude(const mavlink_message_t &msg) { mavlink_gimbal_manager_set_attitude_t packet; mavlink_msg_gimbal_manager_set_attitude_decode(&msg,&packet); AP_Mount_Backend *backend; // check gimbal device id. 0 is primary, 1 is 1st gimbal, 2 is // 2nd gimbal, etc const uint8_t instance = packet.gimbal_device_id; if (instance == 0) { backend = get_primary(); } else { backend = get_instance(instance - 1); } if (backend == nullptr) { return; } // check flags for change to RETRACT const uint32_t flags = packet.flags; if ((flags & GIMBAL_MANAGER_FLAGS_RETRACT) > 0) { backend->set_mode(MAV_MOUNT_MODE_RETRACT); return; } // check flags for change to NEUTRAL if ((flags & GIMBAL_MANAGER_FLAGS_NEUTRAL) > 0) { backend->set_mode(MAV_MOUNT_MODE_NEUTRAL); return; } const Quaternion att_quat{packet.q}; const Vector3f att_rate_degs { packet.angular_velocity_x, packet.angular_velocity_y, packet.angular_velocity_y }; // ensure that we are only demanded to a specific attitude or to // achieve a specific rate. Do not allow both to be specified at // the same time: if (!att_quat.is_nan() && !att_rate_degs.is_nan()) { return; } if (!att_quat.is_nan()) { // convert quaternion to euler angles Vector3f attitude; att_quat.to_euler(attitude); // attitude is in radians here attitude *= RAD_TO_DEG; // convert to degrees backend->set_angle_target(attitude.x, attitude.y, attitude.z, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return; } { const float roll_rate_degs = degrees(packet.angular_velocity_x); const float pitch_rate_degs = degrees(packet.angular_velocity_y); const float yaw_rate_degs = degrees(packet.angular_velocity_z); backend->set_rate_target(roll_rate_degs, pitch_rate_degs, yaw_rate_degs, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return; } } void AP_Mount::handle_gimbal_manager_set_pitchyaw(const mavlink_message_t &msg) { mavlink_gimbal_manager_set_pitchyaw_t packet; mavlink_msg_gimbal_manager_set_pitchyaw_decode(&msg,&packet); AP_Mount_Backend *backend; // check gimbal device id. 0 is primary, 1 is 1st gimbal, 2 is // 2nd gimbal, etc const uint8_t instance = packet.gimbal_device_id; if (instance == 0) { backend = get_primary(); } else { backend = get_instance(instance - 1); } if (backend == nullptr) { return; } // check flags for change to RETRACT uint32_t flags = (uint32_t)packet.flags; if ((flags & GIMBAL_MANAGER_FLAGS_RETRACT) > 0) { backend->set_mode(MAV_MOUNT_MODE_RETRACT); return; } // check flags for change to NEUTRAL if ((flags & GIMBAL_MANAGER_FLAGS_NEUTRAL) > 0) { backend->set_mode(MAV_MOUNT_MODE_NEUTRAL); return; } // Do not allow both angle and rate to be specified at the same time if (!isnan(packet.pitch) && !isnan(packet.yaw) && !isnan(packet.pitch_rate) && !isnan(packet.yaw_rate)) { return; } // pitch and yaw from packet are in radians if (!isnan(packet.pitch) && !isnan(packet.yaw)) { const float pitch_angle_deg = degrees(packet.pitch); const float yaw_angle_deg = degrees(packet.yaw); backend->set_angle_target(0, pitch_angle_deg, yaw_angle_deg, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return; } // pitch_rate and yaw_rate from packet are in rad/s if (!isnan(packet.pitch_rate) && !isnan(packet.yaw_rate)) { const float pitch_rate_degs = degrees(packet.pitch_rate); const float yaw_rate_degs = degrees(packet.yaw_rate); backend->set_rate_target(0, pitch_rate_degs, yaw_rate_degs, flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return; } // if neither angles nor rates were provided set the RC_TARGETING yaw lock state if (isnan(packet.pitch) && isnan(packet.yaw) && isnan(packet.pitch_rate) && isnan(packet.yaw_rate)) { backend->set_yaw_lock(flags & GIMBAL_MANAGER_FLAGS_YAW_LOCK); return; } } MAV_RESULT AP_Mount::handle_command_do_set_roi_sysid(const mavlink_command_int_t &packet) { set_target_sysid((uint8_t)packet.param1); return MAV_RESULT_ACCEPTED; } MAV_RESULT AP_Mount::handle_command(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch (packet.command) { case MAV_CMD_DO_MOUNT_CONFIGURE: return handle_command_do_mount_configure(packet); case MAV_CMD_DO_MOUNT_CONTROL: return handle_command_do_mount_control(packet); case MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW: return handle_command_do_gimbal_manager_pitchyaw(packet); case MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE: return handle_command_do_gimbal_manager_configure(packet, msg); case MAV_CMD_DO_SET_ROI_SYSID: return handle_command_do_set_roi_sysid(packet); default: return MAV_RESULT_UNSUPPORTED; } } /// Change the configuration of the mount void AP_Mount::handle_global_position_int(const mavlink_message_t &msg) { mavlink_global_position_int_t packet; mavlink_msg_global_position_int_decode(&msg, &packet); if (!check_latlng(packet.lat, packet.lon)) { return; } for (uint8_t instance=0; instancehandle_global_position_int(msg.sysid, packet); } } } #if AP_MAVLINK_MSG_MOUNT_CONFIGURE_ENABLED /// Change the configuration of the mount void AP_Mount::handle_mount_configure(const mavlink_message_t &msg) { auto *backend = get_primary(); if (backend == nullptr) { return; } mavlink_mount_configure_t packet; mavlink_msg_mount_configure_decode(&msg, &packet); // send message to backend backend->handle_mount_configure(packet); } #endif #if AP_MAVLINK_MSG_MOUNT_CONTROL_ENABLED /// Control the mount (depends on the previously set mount configuration) void AP_Mount::handle_mount_control(const mavlink_message_t &msg) { auto *backend = get_primary(); if (backend == nullptr) { return; } mavlink_mount_control_t packet; mavlink_msg_mount_control_decode(&msg, &packet); // send message to backend backend->handle_mount_control(packet); } #endif #if HAL_GCS_ENABLED // send a GIMBAL_DEVICE_ATTITUDE_STATUS message to GCS void AP_Mount::send_gimbal_device_attitude_status(mavlink_channel_t chan) { // call send_gimbal_device_attitude_status for each instance for (uint8_t instance=0; instancesend_gimbal_device_attitude_status(chan); } } } // send a GIMBAL_MANAGER_INFORMATION message to GCS void AP_Mount::send_gimbal_manager_information(mavlink_channel_t chan) { // call send_gimbal_device_attitude_status for each instance for (uint8_t instance=0; instancesend_gimbal_manager_information(chan); } } } // send a GIMBAL_MANAGER_STATUS message to GCS void AP_Mount::send_gimbal_manager_status(mavlink_channel_t chan) { // call send_gimbal_device_attitude_status for each instance for (uint8_t instance=0; instancesend_gimbal_manager_status(chan); } } } #endif // HAL_GCS_ENABLED #if AP_MOUNT_POI_TO_LATLONALT_ENABLED // get poi information. Returns true on success and fills in gimbal attitude, location and poi location bool AP_Mount::get_poi(uint8_t instance, Quaternion &quat, Location &loc, Location &poi_loc) const { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->get_poi(instance, quat, loc, poi_loc); } #endif // get mount's current attitude in euler angles in degrees. yaw angle is in body-frame // returns true on success bool AP_Mount::get_attitude_euler(uint8_t instance, float& roll_deg, float& pitch_deg, float& yaw_bf_deg) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } // re-use get_attitude_quaternion and convert to Euler angles Quaternion att_quat; if (!backend->get_attitude_quaternion(att_quat)) { return false; } float roll_rad, pitch_rad, yaw_rad; att_quat.to_euler(roll_rad, pitch_rad, yaw_rad); roll_deg = degrees(roll_rad); pitch_deg = degrees(pitch_rad); yaw_bf_deg = degrees(yaw_rad); return true; } // run pre-arm check. returns false on failure and fills in failure_msg // any failure_msg returned will not include a prefix bool AP_Mount::pre_arm_checks(char *failure_msg, uint8_t failure_msg_len) { // check type parameters for (uint8_t i=0; ihealthy()) { strncpy(failure_msg, "not healthy", failure_msg_len); return false; } } return true; } // get target rate in deg/sec. returns true on success bool AP_Mount::get_rate_target(uint8_t instance, float& roll_degs, float& pitch_degs, float& yaw_degs, bool& yaw_is_earth_frame) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->get_rate_target(roll_degs, pitch_degs, yaw_degs, yaw_is_earth_frame); } // get target angle in deg. returns true on success bool AP_Mount::get_angle_target(uint8_t instance, float& roll_deg, float& pitch_deg, float& yaw_deg, bool& yaw_is_earth_frame) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->get_angle_target(roll_deg, pitch_deg, yaw_deg, yaw_is_earth_frame); } // accessors for scripting backends and logging bool AP_Mount::get_location_target(uint8_t instance, Location& target_loc) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->get_location_target(target_loc); } void AP_Mount::set_attitude_euler(uint8_t instance, float roll_deg, float pitch_deg, float yaw_bf_deg) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->set_attitude_euler(roll_deg, pitch_deg, yaw_bf_deg); } #if HAL_LOGGING_ENABLED // write mount log packet for all backends void AP_Mount::write_log() { // each instance writes log for (uint8_t instance=0; instancewrite_log(0); } } } void AP_Mount::write_log(uint8_t instance, uint64_t timestamp_us) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->write_log(timestamp_us); } #endif // point at system ID sysid void AP_Mount::set_target_sysid(uint8_t instance, uint8_t sysid) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } // call instance's set_roi_cmd backend->set_target_sysid(sysid); } // set_roi_target - sets target location that mount should attempt to point towards void AP_Mount::set_roi_target(uint8_t instance, const Location &target_loc) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->set_roi_target(target_loc); } // clear_roi_target - clears target location that mount should attempt to point towards void AP_Mount::clear_roi_target(uint8_t instance) { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->clear_roi_target(); } // // camera controls for gimbals that include a camera // // take a picture. returns true on success bool AP_Mount::take_picture(uint8_t instance) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->take_picture(); } // start or stop video recording. returns true on success // set start_recording = true to start record, false to stop recording bool AP_Mount::record_video(uint8_t instance, bool start_recording) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->record_video(start_recording); } // set zoom specified as a rate or percentage bool AP_Mount::set_zoom(uint8_t instance, ZoomType zoom_type, float zoom_value) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->set_zoom(zoom_type, zoom_value); } // set focus specified as rate, percentage or auto // focus in = -1, focus hold = 0, focus out = 1 SetFocusResult AP_Mount::set_focus(uint8_t instance, FocusType focus_type, float focus_value) { auto *backend = get_instance(instance); if (backend == nullptr) { return SetFocusResult::FAILED; } return backend->set_focus(focus_type, focus_value); } // set tracking to none, point or rectangle (see TrackingType enum) // if POINT only p1 is used, if RECTANGLE then p1 is top-left, p2 is bottom-right // p1,p2 are in range 0 to 1. 0 is left or top, 1 is right or bottom bool AP_Mount::set_tracking(uint8_t instance, TrackingType tracking_type, const Vector2f& p1, const Vector2f& p2) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->set_tracking(tracking_type, p1, p2); } // set camera lens as a value from 0 to 5 bool AP_Mount::set_lens(uint8_t instance, uint8_t lens) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->set_lens(lens); } #if HAL_MOUNT_SET_CAMERA_SOURCE_ENABLED // set_camera_source is functionally the same as set_lens except primary and secondary lenses are specified by type // primary and secondary sources use the AP_Camera::CameraSource enum cast to uint8_t bool AP_Mount::set_camera_source(uint8_t instance, uint8_t primary_source, uint8_t secondary_source) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->set_camera_source(primary_source, secondary_source); } #endif // send camera information message to GCS void AP_Mount::send_camera_information(uint8_t instance, mavlink_channel_t chan) const { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->send_camera_information(chan); } // send camera settings message to GCS void AP_Mount::send_camera_settings(uint8_t instance, mavlink_channel_t chan) const { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->send_camera_settings(chan); } // send camera capture status message to GCS void AP_Mount::send_camera_capture_status(uint8_t instance, mavlink_channel_t chan) const { auto *backend = get_instance(instance); if (backend == nullptr) { return; } backend->send_camera_capture_status(chan); } // get rangefinder distance. Returns true on success bool AP_Mount::get_rangefinder_distance(uint8_t instance, float& distance_m) const { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->get_rangefinder_distance(distance_m); } // enable/disable rangefinder. Returns true on success bool AP_Mount::set_rangefinder_enable(uint8_t instance, bool enable) { auto *backend = get_instance(instance); if (backend == nullptr) { return false; } return backend->set_rangefinder_enable(enable); } AP_Mount_Backend *AP_Mount::get_primary() const { return get_instance(_primary); } AP_Mount_Backend *AP_Mount::get_instance(uint8_t instance) const { if (instance >= ARRAY_SIZE(_backends)) { return nullptr; } return _backends[instance]; } // pass a GIMBAL_REPORT message to the backend void AP_Mount::handle_gimbal_report(mavlink_channel_t chan, const mavlink_message_t &msg) { for (uint8_t instance=0; instancehandle_gimbal_report(chan, msg); } } } void AP_Mount::handle_message(mavlink_channel_t chan, const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_GIMBAL_REPORT: handle_gimbal_report(chan, msg); break; #if AP_MAVLINK_MSG_MOUNT_CONFIGURE_ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: handle_mount_configure(msg); break; #endif #if AP_MAVLINK_MSG_MOUNT_CONTROL_ENABLED case MAVLINK_MSG_ID_MOUNT_CONTROL: handle_mount_control(msg); break; #endif case MAVLINK_MSG_ID_GLOBAL_POSITION_INT: handle_global_position_int(msg); break; case MAVLINK_MSG_ID_GIMBAL_MANAGER_SET_ATTITUDE: handle_gimbal_manager_set_attitude(msg); break; case MAVLINK_MSG_ID_GIMBAL_MANAGER_SET_PITCHYAW: handle_gimbal_manager_set_pitchyaw(msg); break; case MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION: handle_gimbal_device_information(msg); break; case MAVLINK_MSG_ID_GIMBAL_DEVICE_ATTITUDE_STATUS: handle_gimbal_device_attitude_status(msg); break; default: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("Unhandled mount case"); #endif break; } } // handle PARAM_VALUE void AP_Mount::handle_param_value(const mavlink_message_t &msg) { for (uint8_t instance=0; instancehandle_param_value(msg); } } } // handle GIMBAL_DEVICE_INFORMATION message void AP_Mount::handle_gimbal_device_information(const mavlink_message_t &msg) { for (uint8_t instance=0; instancehandle_gimbal_device_information(msg); } } } // handle GIMBAL_DEVICE_ATTITUDE_STATUS message void AP_Mount::handle_gimbal_device_attitude_status(const mavlink_message_t &msg) { for (uint8_t instance=0; instancehandle_gimbal_device_attitude_status(msg); } } } // perform any required parameter conversion void AP_Mount::convert_params() { // exit immediately if MNT1_TYPE has already been configured if (_params[0].type.configured()) { return; } // below conversions added Sep 2022 ahead of 4.3 release // convert MNT_TYPE to MNT1_TYPE int8_t mnt_type = 0; IGNORE_RETURN(AP_Param::get_param_by_index(this, 19, AP_PARAM_INT8, &mnt_type)); if (mnt_type == 0) { // if the mount was not previously set, no need to perform the upgrade logic return; } else if (mnt_type > 0) { int8_t stab_roll = 0; int8_t stab_pitch = 0; IGNORE_RETURN(AP_Param::get_param_by_index(this, 4, AP_PARAM_INT8, &stab_roll)); IGNORE_RETURN(AP_Param::get_param_by_index(this, 5, AP_PARAM_INT8, &stab_pitch)); if (mnt_type == 1 && stab_roll == 0 && stab_pitch == 0) { // Servo type without stabilization is changed to BrushlessPWM // conversion is still done even if HAL_MOUNT_SERVO_ENABLED is false mnt_type = 7; // (int8_t)Type::BrushlessPWM; } // if the mount was previously set, then we need to save the upgraded mount type _params[0].type.set_and_save(mnt_type); } // convert MNT_JSTICK_SPD to MNT1_RC_RATE int8_t jstick_spd = 0; if (AP_Param::get_param_by_index(this, 16, AP_PARAM_INT8, &jstick_spd) && (jstick_spd > 0)) { _params[0].rc_rate_max.set_and_save(jstick_spd * 0.3); } // find Mount's top level key uint16_t k_param_mount_key; if (!AP_Param::find_top_level_key_by_pointer(this, k_param_mount_key)) { return; } // table of mount parameters to be converted without scaling static const AP_Param::ConversionInfo mnt_param_conversion_info[] { { k_param_mount_key, 0, AP_PARAM_INT8, "MNT1_DEFLT_MODE" }, { k_param_mount_key, 1, AP_PARAM_VECTOR3F, "MNT1_RETRACT" }, { k_param_mount_key, 2, AP_PARAM_VECTOR3F, "MNT1_NEUTRAL" }, { k_param_mount_key, 17, AP_PARAM_FLOAT, "MNT1_LEAD_RLL" }, { k_param_mount_key, 18, AP_PARAM_FLOAT, "MNT1_LEAD_PTCH" }, }; uint8_t table_size = ARRAY_SIZE(mnt_param_conversion_info); for (uint8_t i=0; i 0)) { // get pointers to the appropriate RCx_OPTION parameter char pname[17]; enum ap_var_type ptype; snprintf(pname, sizeof(pname), "RC%u_OPTION", (unsigned)mnt_rcin); AP_Int16 *rcx_option = (AP_Int16 *)AP_Param::find(pname, &ptype); if ((rcx_option != nullptr) && !rcx_option->configured()) { rcx_option->set_and_save(mnt_rc_conversion_table[i].new_rc_option); } } } } // singleton instance AP_Mount *AP_Mount::_singleton; namespace AP { AP_Mount *mount() { return AP_Mount::get_singleton(); } }; #endif /* HAL_MOUNT_ENABLED */