/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /********************************************************************************/ // Command Event Handlers /********************************************************************************/ // process_nav_command - main switch statement to initiate the next nav command in the command_nav_queue static void process_nav_command() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: // 22 do_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint do_nav_wp(); break; case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint do_land(&command_nav_queue); break; case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely do_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times do_circle(); break; case MAV_CMD_NAV_LOITER_TIME: // 19 do_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20 do_RTL(); break; default: break; } } // process_cond_command - main switch statement to initiate the next conditional command in the command_cond_queue static void process_cond_command() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: // 112 do_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: // 114 do_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: // 113 do_change_alt(); break; case MAV_CMD_CONDITION_YAW: // 115 do_yaw(); break; default: break; } } // process_now_command - main switch statement to initiate the next now command in the command_cond_queue // now commands are conditional commands that are executed immediately so they do not require a corresponding verify to be run later static void process_now_command() { switch(command_cond_queue.id) { case MAV_CMD_DO_JUMP: // 177 do_jump(); break; case MAV_CMD_DO_CHANGE_SPEED: // 178 do_change_speed(); break; case MAV_CMD_DO_SET_HOME: // 179 do_set_home(); break; case MAV_CMD_DO_SET_SERVO: ServoRelayEvents.do_set_servo(command_cond_queue.p1, command_cond_queue.alt); break; case MAV_CMD_DO_SET_RELAY: ServoRelayEvents.do_set_relay(command_cond_queue.p1, command_cond_queue.alt); break; case MAV_CMD_DO_REPEAT_SERVO: ServoRelayEvents.do_repeat_servo(command_cond_queue.p1, command_cond_queue.alt, command_cond_queue.lat, command_cond_queue.lng); break; case MAV_CMD_DO_REPEAT_RELAY: ServoRelayEvents.do_repeat_relay(command_cond_queue.p1, command_cond_queue.alt, command_cond_queue.lat); break; case MAV_CMD_DO_SET_ROI: // 201 // point the copter and camera at a region of interest (ROI) do_roi(); break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| do_take_picture(); break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: camera.set_trigger_distance(command_cond_queue.alt); break; #endif #if MOUNT == ENABLED case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif default: // do nothing with unrecognized MAVLink messages break; } } /********************************************************************************/ // Verify command Handlers /********************************************************************************/ // verify_nav_command - switch statement to ensure the active navigation command is progressing // returns true once the active navigation command completes successfully static bool verify_nav_command() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(); break; case MAV_CMD_NAV_LAND: return verify_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: return verify_circle(); break; case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); break; default: return false; break; } } // verify_cond_command - switch statement to ensure the active conditional command is progressing // returns true once the active conditional command completes successfully static bool verify_cond_command() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; case MAV_CMD_CONDITION_YAW: return verify_yaw(); break; default: return false; break; } } /********************************************************************************/ // /********************************************************************************/ // do_RTL - start Return-to-Launch static void do_RTL(void) { // set rtl state rtl_init(true); } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ // do_takeoff - initiate takeoff navigation command static void do_takeoff() { // Set wp navigation target to safe altitude above current position float takeoff_alt = command_nav_queue.alt; takeoff_alt = max(takeoff_alt,current_loc.alt); takeoff_alt = max(takeoff_alt,100.0f); auto_takeoff_start(takeoff_alt); } // do_nav_wp - initiate move to next waypoint static void do_nav_wp() { // Set wp navigation target auto_wp_start(pv_location_to_vector(command_nav_queue)); // initialise original_wp_bearing which is used to check if we have missed the waypoint wp_bearing = wp_nav.get_wp_bearing_to_destination(); original_wp_bearing = wp_bearing; // this will be used to remember the time in millis after we reach or pass the WP. loiter_time = 0; // this is the delay, stored in seconds and expanded to millis loiter_time_max = command_nav_queue.p1; // if no delay set the waypoint as "fast" if (loiter_time_max == 0 ) { wp_nav.set_fast_waypoint(true); } } // do_land - initiate landing procedure // caller should set roll_pitch_mode to ROLL_PITCH_AUTO (for no pilot input) or ROLL_PITCH_LOITER (for pilot input) static void do_land(const struct Location *cmd) { // To-Do: check if we have already landed // if location provided we fly to that location at current altitude if (cmd != NULL && (cmd->lat != 0 || cmd->lng != 0)) { // set state to fly to location land_state = LAND_STATE_FLY_TO_LOCATION; // calculate and set desired location above landing target Vector3f pos = pv_location_to_vector(*cmd); pos.z = min(current_loc.alt, RTL_ALT_MAX); auto_wp_start(pos); // initialise original_wp_bearing which is used to check if we have missed the waypoint wp_bearing = wp_nav.get_wp_bearing_to_destination(); original_wp_bearing = wp_bearing; }else{ // set landing state land_state = LAND_STATE_DESCENDING; // initialise landing controller auto_land_start(); } } // do_loiter_unlimited - start loitering with no end conditions // note: caller should set yaw_mode static void do_loiter_unlimited() { Vector3f target_pos; // set roll-pitch mode (no pilot input) set_roll_pitch_mode(AUTO_RP); // set throttle mode to AUTO which, if not already active, will default to hold at our current altitude set_throttle_mode(AUTO_THR); // hold yaw set_auto_yaw_mode(AUTO_YAW_HOLD); // get current position Vector3f curr_pos = inertial_nav.get_position(); // use current location if not provided if(command_nav_queue.lat == 0 && command_nav_queue.lng == 0) { wp_nav.get_wp_stopping_point_xy(target_pos); }else{ // default to use position provided target_pos = pv_location_to_vector(command_nav_queue); } // use current altitude if not provided if( command_nav_queue.alt == 0 ) { target_pos.z = curr_pos.z; } // start way point navigator and provide it the desired location set_nav_mode(NAV_WP); wp_nav.set_wp_destination(target_pos); } // do_circle - initiate moving in a circle static void do_circle() { // set roll-pitch mode (no pilot input) set_roll_pitch_mode(AUTO_RP); // set throttle mode to AUTO which, if not already active, will default to hold at our current altitude set_throttle_mode(AUTO_THR); // set nav mode to CIRCLE set_nav_mode(NAV_CIRCLE); // set target altitude if provided if( command_nav_queue.alt != 0 ) { wp_nav.set_desired_alt(command_nav_queue.alt); } // override default horizontal location target if( command_nav_queue.lat != 0 || command_nav_queue.lng != 0) { circle_set_center(pv_location_to_vector(command_nav_queue), ahrs.yaw); } // set yaw to point to center of circle set_auto_yaw_mode(CIRCLE_YAW); // set angle travelled so far to zero circle_angle_total = 0; // record number of desired rotations from mission command circle_desired_rotations = command_nav_queue.p1; } // do_loiter_time - initiate loitering at a point for a given time period // note: caller should set yaw_mode static void do_loiter_time() { Vector3f target_pos; // set roll-pitch mode (no pilot input) set_roll_pitch_mode(AUTO_RP); // set throttle mode to AUTO which, if not already active, will default to hold at our current altitude set_throttle_mode(AUTO_THR); // hold yaw set_auto_yaw_mode(AUTO_YAW_HOLD); // get current position Vector3f curr_pos = inertial_nav.get_position(); // use current location if not provided if(command_nav_queue.lat == 0 && command_nav_queue.lng == 0) { wp_nav.get_wp_stopping_point_xy(target_pos); }else{ // default to use position provided target_pos = pv_location_to_vector(command_nav_queue); } // use current altitude if not provided if( command_nav_queue.alt == 0 ) { target_pos.z = curr_pos.z; } // start way point navigator and provide it the desired location set_nav_mode(NAV_WP); wp_nav.set_wp_destination(target_pos); // setup loiter timer loiter_time = 0; loiter_time_max = command_nav_queue.p1; // units are (seconds) } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ // verify_takeoff - check if we have completed the takeoff static bool verify_takeoff() { // have we reached our target altitude? set_takeoff_complete(wp_nav.reached_wp_destination()); return wp_nav.reached_wp_destination(); } // verify_land - returns true if landing has been completed static bool verify_land() { bool retval = false; switch( land_state ) { case LAND_STATE_FLY_TO_LOCATION: // check if we've reached the location if (wp_nav.reached_wp_destination()) { // get destination so we can use it for loiter target Vector3f dest = wp_nav.get_wp_destination(); // initialise landing controller auto_land_start(dest); // advance to next state land_state = LAND_STATE_DESCENDING; } break; case LAND_STATE_DESCENDING: // rely on THROTTLE_LAND mode to correctly update landing status retval = ap.land_complete; break; default: // this should never happen // TO-DO: log an error retval = true; break; } // true is returned if we've successfully landed return retval; } // verify_nav_wp - check if we have reached the next way point static bool verify_nav_wp() { // check if we have reached the waypoint if( !wp_nav.reached_wp_destination() ) { return false; } // start timer if necessary if(loiter_time == 0) { loiter_time = millis(); } // check if timer has run out if (((millis() - loiter_time) / 1000) >= loiter_time_max) { gcs_send_text_fmt(PSTR("Reached Command #%i"),command_nav_index); return true; }else{ return false; } } static bool verify_loiter_unlimited() { return false; } // verify_loiter_time - check if we have loitered long enough static bool verify_loiter_time() { // return immediately if we haven't reached our destination if (!wp_nav.reached_wp_destination()) { return false; } // start our loiter timer if( loiter_time == 0 ) { loiter_time = millis(); } // check if loiter timer has run out return (((millis() - loiter_time) / 1000) >= loiter_time_max); } // verify_circle - check if we have circled the point enough static bool verify_circle() { // have we rotated around the center enough times? return fabsf(circle_angle_total/(2*M_PI)) >= circle_desired_rotations; } // externs to remove compiler warning extern bool rtl_state_complete; // verify_RTL - handles any state changes required to implement RTL // do_RTL should have been called once first to initialise all variables // returns true with RTL has completed successfully static bool verify_RTL() { return (rtl_state_complete && (rtl_state == FinalDescent || rtl_state == Land)); } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay() { //cliSerial->print("dwd "); condition_start = millis(); condition_value = command_cond_queue.lat * 1000; // convert to milliseconds //cliSerial->println(condition_value,DEC); } static void do_change_alt() { // adjust target appropriately for each nav mode switch (nav_mode) { case NAV_CIRCLE: case NAV_LOITER: // update loiter target altitude wp_nav.set_desired_alt(command_cond_queue.alt); break; case NAV_WP: // To-Do: update waypoint nav's destination altitude break; } // To-Do: store desired altitude in a variable so that it can be verified later } static void do_within_distance() { condition_value = command_cond_queue.lat * 100; } static void do_yaw() { // get final angle, 1 = Relative, 0 = Absolute if( command_cond_queue.lng == 0 ) { // absolute angle yaw_look_at_heading = wrap_360_cd(command_cond_queue.alt * 100); }else{ // relative angle yaw_look_at_heading = wrap_360_cd(control_yaw + command_cond_queue.alt * 100); } // get turn speed if( command_cond_queue.lat == 0 ) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; }else{ int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - control_yaw) / 100) / command_cond_queue.lat; yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise / counter clockwise rotation held in command_cond_queue.p1 // command_cond_queue.p1; // 0 = undefined, 1 = clockwise, -1 = counterclockwise } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { //cliSerial->print("vwd"); if (millis() - condition_start > (uint32_t)max(condition_value,0)) { //cliSerial->println("y"); condition_value = 0; return true; } //cliSerial->println("n"); return false; } static bool verify_change_alt() { // To-Do: use recorded target altitude to verify we have reached the target return true; } static bool verify_within_distance() { if (wp_distance < max(condition_value,0)) { condition_value = 0; return true; } return false; } // verify_yaw - return true if we have reached the desired heading static bool verify_yaw() { if( labs(wrap_180_cd(ahrs.yaw_sensor-yaw_look_at_heading)) <= 200 ) { return true; }else{ return false; } } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ // do_guided - start guided mode // this is not actually a mission command but rather a static void do_guided(const struct Location *cmd) { bool first_time = false; // switch to guided mode if we're not already in guided mode if (control_mode != GUIDED) { if (set_mode(GUIDED)) { first_time = true; }else{ // if we failed to enter guided mode return immediately return; } } // set wp_nav's destination Vector3f pos = pv_location_to_vector(*cmd); wp_nav.set_wp_destination(pos); // initialise wp_bearing for reporting purposes wp_bearing = wp_nav.get_wp_bearing_to_destination(); // point nose at next waypoint if it is more than 10m away if (auto_yaw_mode == AUTO_YAW_LOOK_AT_NEXT_WP) { // get distance to new location wp_distance = wp_nav.get_wp_distance_to_destination(); // set original_wp_bearing to point at next waypoint if (wp_distance >= 1000 || first_time) { original_wp_bearing = wp_bearing; } } } static void do_change_speed() { wp_nav.set_horizontal_velocity(command_cond_queue.p1 * 100); } static void do_jump() { // Used to track the state of the jump command in Mission scripting // -10 is a value that means the register is unused // when in use, it contains the current remaining jumps static int8_t jump = -10; // used to track loops in jump command if(jump == -10) { // we use a locally stored index for jump jump = command_cond_queue.lat; } if(jump > 0) { jump--; change_command(command_cond_queue.p1); } else if (jump == 0) { // we're done, move along jump = -11; } else if (jump == -1) { // repeat forever change_command(command_cond_queue.p1); } } static void do_set_home() { if(command_cond_queue.p1 == 1) { init_home(); } else { home.id = MAV_CMD_NAV_WAYPOINT; home.lng = command_cond_queue.lng; // Lon * 10**7 home.lat = command_cond_queue.lat; // Lat * 10**7 home.alt = 0; //home_is_set = true; set_home_is_set(true); } } // do_roi - starts actions required by MAV_CMD_NAV_ROI // this involves either moving the camera to point at the ROI (region of interest) // and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature // Note: the ROI should already be in the command_nav_queue global variable // TO-DO: add support for other features of MAV_CMD_DO_SET_ROI including pointing at a given waypoint static void do_roi() { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) { yaw_look_at_WP = pv_location_to_vector(command_cond_queue); set_auto_yaw_mode(AUTO_YAW_LOOK_AT_LOCATION); } // send the command to the camera mount camera_mount.set_roi_cmd(&command_cond_queue); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the quad at the location yaw_look_at_WP = pv_location_to_vector(command_cond_queue); set_auto_yaw_mode(AUTO_YAW_LOOK_AT_LOCATION); #endif } // do_take_picture - take a picture with the camera library static void do_take_picture() { #if CAMERA == ENABLED camera.trigger_pic(); if (g.log_bitmask & MASK_LOG_CAMERA) { Log_Write_Camera(); } #endif }