/* SITL handling This simulates an analog airspeed sensor Andrew Tridgell November 2011 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH) #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "SITL_State.h" #include #include extern const AP_HAL::HAL& hal; using namespace HALSITL; /* convert airspeed in m/s to an airspeed sensor value */ void SITL_State::_update_airspeed(float airspeed) { float airspeed2 = airspeed; const float airspeed_ratio = 1.9936f; const float diff_pressure = sq(airspeed) * 0.5; // apply noise to the differential pressure. This emulates the way // airspeed noise reduces with speed airspeed = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[0] * rand_float()))); airspeed2 = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[1] * rand_float()))); // check sensor failure if (is_positive(_sitl->arspd_fail[0])) { airspeed = _sitl->arspd_fail[0]; } if (is_positive(_sitl->arspd_fail[1])) { airspeed2 = _sitl->arspd_fail[1]; } if (!is_zero(_sitl->arspd_fail_pressure[0])) { // compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude // algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure float tube_pressure = fabsf(_sitl->arspd_fail_pressure[0] - _barometer->get_pressure() + _sitl->arspd_fail_pitot_pressure[0]); airspeed = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0)); } if (!is_zero(_sitl->arspd_fail_pressure[1])) { // compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude // algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure float tube_pressure = fabsf(_sitl->arspd_fail_pressure[1] - _barometer->get_pressure() + _sitl->arspd_fail_pitot_pressure[1]); airspeed2 = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0)); } float airspeed_pressure = (airspeed * airspeed) / airspeed_ratio; float airspeed2_pressure = (airspeed2 * airspeed2) / airspeed_ratio; // flip sign here for simulating reversed pitot/static connections if (_sitl->arspd_signflip) airspeed_pressure *= -1; if (_sitl->arspd_signflip) airspeed2_pressure *= -1; // apply airspeed sensor offset in m/s float airspeed_raw = airspeed_pressure + _sitl->arspd_offset[0]; float airspeed2_raw = airspeed2_pressure + _sitl->arspd_offset[1]; if (airspeed_raw / 4 > 0xFFFF) { airspeed_pin_value = 0xFFFF; return; } if (airspeed2_raw / 4 > 0xFFFF) { airspeed_2_pin_value = 0xFFFF; return; } // add delay const uint32_t now = AP_HAL::millis(); uint32_t best_time_delta_wind = 200; // initialise large time representing buffer entry closest to current time - delay. uint8_t best_index_wind = 0; // initialise number representing the index of the entry in buffer closest to delay. // storing data from sensor to buffer if (now - last_store_time_wind >= 10) { // store data every 10 ms. last_store_time_wind = now; if (store_index_wind > wind_buffer_length - 1) { // reset buffer index if index greater than size of buffer store_index_wind = 0; } buffer_wind[store_index_wind].data = airspeed_raw; // add data to current index buffer_wind[store_index_wind].time = last_store_time_wind; // add time to current index buffer_wind_2[store_index_wind].data = airspeed2_raw; // add data to current index buffer_wind_2[store_index_wind].time = last_store_time_wind; // add time to current index store_index_wind = store_index_wind + 1; // increment index } // return delayed measurement delayed_time_wind = now - _sitl->wind_delay; // get time corresponding to delay // find data corresponding to delayed time in buffer for (uint8_t i = 0; i <= wind_buffer_length - 1; i++) { // find difference between delayed time and time stamp in buffer time_delta_wind = abs( (int32_t)(delayed_time_wind - buffer_wind[i].time)); // if this difference is smaller than last delta, store this time if (time_delta_wind < best_time_delta_wind) { best_index_wind = i; best_time_delta_wind = time_delta_wind; } } if (best_time_delta_wind < 200) { // only output stored state if < 200 msec retrieval error airspeed_raw = buffer_wind[best_index_wind].data; airspeed2_raw = buffer_wind_2[best_index_wind].data; } airspeed_pin_value = airspeed_raw / 4; airspeed_2_pin_value = airspeed2_raw / 4; } #endif