#include "Rover.h" #include "GCS_Mavlink.h" #include MAV_TYPE GCS_MAVLINK_Rover::frame_type() const { if (rover.is_boat()) { return MAV_TYPE_SURFACE_BOAT; } return MAV_TYPE_GROUND_ROVER; } MAV_MODE GCS_MAVLINK_Rover::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation if (rover.control_mode->has_manual_input()) { _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } if (rover.control_mode->is_autopilot_mode()) { _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; } #if defined(ENABLE_STICK_MIXING) && (ENABLE_STICK_MIXING == ENABLED) // TODO ???? Remove ! if (control_mode->stick_mixing_enabled()) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #endif #if HIL_MODE != HIL_MODE_DISABLED _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (rover.control_mode != &rover.mode_initializing && rover.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_MAVLINK_Rover::custom_mode() const { return rover.control_mode->mode_number(); } MAV_STATE GCS_MAVLINK_Rover::system_status() const { if (rover.failsafe.triggered != 0) { return MAV_STATE_CRITICAL; } if (rover.control_mode == &rover.mode_initializing) { return MAV_STATE_CALIBRATING; } if (rover.control_mode == &rover.mode_hold) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void Rover::send_extended_status1(mavlink_channel_t chan) { int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } update_sensor_status_flags(); mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, static_cast(scheduler.load_average() * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void Rover::send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, g2.attitude_control.get_desired_lat_accel(), ahrs.groundspeed() * ins.get_gyro().z, // use nav_pitch to hold actual Y accel nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, MIN(control_mode->get_distance_to_destination(), UINT16_MAX), 0, control_mode->speed_error(), nav_controller->crosstrack_error()); } void Rover::send_servo_out(mavlink_channel_t chan) { float motor1, motor3; if (g2.motors.have_skid_steering()) { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) / 1000.0f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) / 1000.0f); } else { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f); } mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 motor1, 0, motor3, 0, 0, 0, 0, 0, rssi.read_receiver_rssi_uint8()); } int16_t GCS_MAVLINK_Rover::vfr_hud_throttle() const { return rover.g2.motors.get_throttle(); } void Rover::send_rangefinder(mavlink_channel_t chan) { float distance_cm; float voltage; bool got_one = false; // report smaller distance of all rangefinders for (uint8_t i=0; idistance_cm() < distance_cm) { distance_cm = s->distance_cm(); voltage = s->voltage_mv(); got_one = true; } } if (!got_one) { // no relevant data found return; } mavlink_msg_rangefinder_send( chan, distance_cm * 0.01f, voltage); } /* send PID tuning message */ void Rover::send_pid_tuning(mavlink_channel_t chan) { const DataFlash_Class::PID_Info *pid_info; // steering PID if (g.gcs_pid_mask & 1) { pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER, degrees(pid_info->desired), degrees(ahrs.get_yaw_rate_earth()), pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // speed to throttle PID if (g.gcs_pid_mask & 2) { pid_info = &g2.attitude_control.get_throttle_speed_pid().get_pid_info(); float speed = 0.0f; g2.attitude_control.get_forward_speed(speed); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info->desired, speed, 0, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // pitch to throttle pid if (g.gcs_pid_mask & 4) { pid_info = &g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, degrees(pid_info->desired), degrees(ahrs.pitch), pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // left wheel rate control pid if (g.gcs_pid_mask & 8) { pid_info = &g2.wheel_rate_control.get_pid(0).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 7, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // right wheel rate control pid if (g.gcs_pid_mask & 16) { pid_info = &g2.wheel_rate_control.get_pid(1).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 8, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // sailboat heel to mainsail pid if (g.gcs_pid_mask & 32) { pid_info = &g2.attitude_control.get_sailboat_heel_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, 9, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void Rover::send_fence_status(mavlink_channel_t chan) { fence_send_mavlink_status(chan); } void Rover::send_wheel_encoder(mavlink_channel_t chan) { // send wheel encoder data using rpm message if (g2.wheel_encoder.enabled(0) || g2.wheel_encoder.enabled(1)) { mavlink_msg_rpm_send(chan, wheel_encoder_rpm[0], wheel_encoder_rpm[1]); } } uint8_t GCS_MAVLINK_Rover::sysid_my_gcs() const { return rover.g.sysid_my_gcs; } uint32_t GCS_MAVLINK_Rover::telem_delay() const { return static_cast(rover.g.telem_delay); } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id) { if (telemetry_delayed()) { return false; } // if we don't have at least 0.2ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!hal.scheduler->in_delay_callback() && rover.scheduler.time_available_usec() < 200) { gcs().set_out_of_time(true); return false; } switch (id) { case MSG_EXTENDED_STATUS1: // send extended status only once vehicle has been initialised // to avoid unnecessary errors being reported to user if (initialised) { CHECK_PAYLOAD_SIZE(SYS_STATUS); rover.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); send_power_status(); } break; case MSG_NAV_CONTROLLER_OUTPUT: if (rover.control_mode->is_autopilot_mode()) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); rover.send_nav_controller_output(chan); } break; case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); rover.send_servo_out(chan); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); rover.send_rangefinder(chan); send_distance_sensor(); send_proximity(); break; case MSG_RPM: CHECK_PAYLOAD_SIZE(RPM); rover.send_wheel_encoder(chan); break; case MSG_FENCE_STATUS: CHECK_PAYLOAD_SIZE(FENCE_STATUS); rover.send_fence_status(chan); break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); rover.g2.windvane.send_wind(chan); break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); rover.send_pid_tuning(chan); break; default: return GCS_MAVLINK::try_send_message(id); } return true; } void GCS_MAVLINK_Rover::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { // pass message to follow library rover.g2.follow.handle_msg(msg); GCS_MAVLINK::packetReceived(status, msg); } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU1, // RAW_IMU, SCALED_IMU2, SCALED_IMU3 MSG_RAW_IMU2, // BARO MSG_RAW_IMU3 // SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_EXTENDED_STATUS1, // SYS_STATUS, POWER_STATUS MSG_EXTENDED_STATUS2, // MEMINFO MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { MSG_SERVO_OUT, }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, // SIMSTATE, AHRS2 MSG_PID_TUNING, }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_SYSTEM_TIME, MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, MSG_RPM, MSG_ESC_TELEMETRY, }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Rover::in_hil_mode() const { #if HIL_MODE != HIL_MODE_DISABLED return rover.g.hil_mode == 1; #endif return false; } bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (rover.control_mode != &rover.mode_guided) { // only accept position updates when in GUIDED mode return false; } // make any new wp uploaded instant (in case we are already in Guided mode) rover.mode_guided.set_desired_location(cmd.content.location); return true; } void GCS_MAVLINK_Rover::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // nothing to do } MAV_RESULT GCS_MAVLINK_Rover::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param4, 1.0f)) { if (rover.trim_radio()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } else if (is_equal(packet.param6, 1.0f)) { if (rover.g2.windvane.start_calibration()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_packet(const mavlink_command_int_t &packet) { switch (packet.command) { case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s if (!rover.control_mode->set_desired_speed(packet.param2)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_SET_HOME: { // assume failure if (is_equal(packet.param1, 1.0f)) { // if param1 is 1, use current location if (rover.set_home_to_current_location(true)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } // check frame type is supported if (packet.frame != MAV_FRAME_GLOBAL && packet.frame != MAV_FRAME_GLOBAL_INT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { return MAV_RESULT_FAILED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_FAILED; } Location new_home_loc {}; new_home_loc.lat = packet.x; new_home_loc.lng = packet.y; new_home_loc.alt = packet.z * 100; // handle relative altitude if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { if (!rover.ahrs.home_is_set()) { // cannot use relative altitude if home is not set return MAV_RESULT_FAILED; } new_home_loc.alt += rover.ahrs.get_home().alt; } if (!rover.set_home(new_home_loc, true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } case MAV_CMD_DO_SET_REVERSE: // param1 : Direction (0=Forward, 1=Reverse) rover.control_mode->set_reversed(is_equal(packet.param1,1.0f)); return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Rover::handle_command_long_packet(const mavlink_command_long_t &packet) { switch (packet.command) { case MAV_CMD_NAV_RETURN_TO_LAUNCH: rover.set_mode(rover.mode_rtl, MODE_REASON_GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_MISSION_START: rover.set_mode(rover.mode_auto, MODE_REASON_GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1, 1.0f)) { // run pre_arm_checks and arm_checks and display failures if (rover.arm_motors(AP_Arming::MAVLINK)) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } else if (is_zero(packet.param1)) { if (rover.disarm_motors()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } return MAV_RESULT_UNSUPPORTED; case MAV_CMD_DO_FENCE_ENABLE: switch ((uint16_t)packet.param1) { case 0: rover.g2.fence.enable(false); return MAV_RESULT_ACCEPTED; case 1: rover.g2.fence.enable(true); return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s if (!rover.control_mode->set_desired_speed(packet.param2)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_SET_HOME: { // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude if (is_equal(packet.param1, 1.0f)) { if (rover.set_home_to_current_location(true)) { return MAV_RESULT_ACCEPTED; } } else { // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } Location new_home_loc {}; new_home_loc.lat = static_cast(packet.param5 * 1.0e7f); new_home_loc.lng = static_cast(packet.param6 * 1.0e7f); new_home_loc.alt = static_cast(packet.param7 * 100.0f); if (rover.set_home(new_home_loc, true)) { return MAV_RESULT_ACCEPTED; } } return MAV_RESULT_FAILED; } case MAV_CMD_DO_SET_REVERSE: // param1 : Direction (0=Forward, 1=Reverse) rover.control_mode->set_reversed(is_equal(packet.param1,1.0f)); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_SET_YAW_SPEED: { // param1 : yaw angle to adjust direction by in centidegress // param2 : Speed - normalized to 0 .. 1 // exit if vehicle is not in Guided mode if (rover.control_mode != &rover.mode_guided) { return MAV_RESULT_UNSUPPORTED; } // send yaw change and target speed to guided mode controller const float speed_max = rover.control_mode->get_speed_default(); const float target_speed = constrain_float(packet.param2 * speed_max, -speed_max, speed_max); rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1, target_speed); return MAV_RESULT_ACCEPTED; } case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) return rover.mavlink_motor_test_start(chan, static_cast(packet.param1), static_cast(packet.param2), static_cast(packet.param3), packet.param4); default: return GCS_MAVLINK::handle_command_long_packet(packet); } } void GCS_MAVLINK_Rover::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs break; } uint32_t tnow = AP_HAL::millis(); mavlink_rc_channels_override_t packet; mavlink_msg_rc_channels_override_decode(msg, &packet); RC_Channels::set_override(0, packet.chan1_raw, tnow); RC_Channels::set_override(1, packet.chan2_raw, tnow); RC_Channels::set_override(2, packet.chan3_raw, tnow); RC_Channels::set_override(3, packet.chan4_raw, tnow); RC_Channels::set_override(4, packet.chan5_raw, tnow); RC_Channels::set_override(5, packet.chan6_raw, tnow); RC_Channels::set_override(6, packet.chan7_raw, tnow); RC_Channels::set_override(7, packet.chan8_raw, tnow); break; } case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs break; } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(msg, &packet); if (packet.target != rover.g.sysid_this_mav) { break; // only accept control aimed at us } uint32_t tnow = AP_HAL::millis(); const int16_t roll = (packet.y == INT16_MAX) ? 0 : rover.channel_steer->get_radio_min() + (rover.channel_steer->get_radio_max() - rover.channel_steer->get_radio_min()) * (packet.y + 1000) / 2000.0f; const int16_t throttle = (packet.z == INT16_MAX) ? 0 : rover.channel_throttle->get_radio_min() + (rover.channel_throttle->get_radio_max() - rover.channel_throttle->get_radio_min()) * (packet.z + 1000) / 2000.0f; RC_Channels::set_override(uint8_t(rover.rcmap.roll() - 1), roll, tnow); RC_Channels::set_override(uint8_t(rover.rcmap.throttle() - 1), throttle, tnow); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if (msg->sysid != rover.g.sysid_my_gcs) { break; } rover.failsafe.last_heartbeat_ms = AP_HAL::millis(); rover.failsafe_trigger(FAILSAFE_EVENT_GCS, false); break; } case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82 { // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(msg, &packet); // exit if vehicle is not in Guided mode if (rover.control_mode != &rover.mode_guided) { break; } // ensure type_mask specifies to use thrust if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) { break; } // convert thrust to ground speed packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f); const float target_speed = rover.control_mode->get_speed_default() * packet.thrust; // if the body_yaw_rate field is ignored, convert quaternion to heading if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) { // convert quaternion to heading float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f; rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed); } else { // use body_yaw_rate field rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode if (rover.control_mode != &rover.mode_guided) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { switch (packet.coordinate_frame) { case MAV_FRAME_BODY_NED: case MAV_FRAME_BODY_OFFSET_NED: { // rotate from body-frame to NE frame const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw(); const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw(); // add offset to current location location_offset(target_loc, ne_x, ne_y); } break; case MAV_FRAME_LOCAL_OFFSET_NED: // add offset to current location location_offset(target_loc, packet.x, packet.y); break; default: // MAV_FRAME_LOCAL_NED interpret as an offset from home target_loc = rover.ahrs.get_home(); location_offset(target_loc, packet.x, packet.y); break; } } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = ToDeg(packet.yaw) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED if (is_negative(packet.vx)) { speed_dir = -1.0f; } } // set guided mode targets if (!pos_ignore) { // consume position target rover.mode_guided.set_desired_location(target_loc); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate(probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode if (rover.control_mode != &rover.mode_guided) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_GLOBAL && packet.coordinate_frame != MAV_FRAME_GLOBAL_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { // result = MAV_RESULT_FAILED; break; } target_loc.lat = packet.lat_int; target_loc.lng = packet.lon_int; } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = ToDeg(packet.yaw) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame is provided in MAV_FRAME_GLOBAL_xxx if (is_negative(packet.vx)) { speed_dir = -1.0f; } } // set guided mode targets if (!pos_ignore) { // consume position target rover.mode_guided.set_desired_location(target_loc); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate(probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, rover.DataFlash, rover.should_log(MASK_LOG_PM)); break; } // send or receive fence points with GCS case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160 case MAVLINK_MSG_ID_FENCE_FETCH_POINT: rover.g2.fence.handle_msg(*this, msg); break; case MAVLINK_MSG_ID_DISTANCE_SENSOR: rover.rangefinder.handle_msg(msg); rover.g2.proximity.handle_msg(msg); break; case MAVLINK_MSG_ID_OBSTACLE_DISTANCE: rover.g2.proximity.handle_msg(msg); break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Rover::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs().chan(0).initialised) { return; } // don't allow potentially expensive logging calls: DataFlash.EnableWrites(false); const uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs().send_message(MSG_HEARTBEAT); gcs().send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } DataFlash.EnableWrites(true); } /* * send data streams in the given rate range on both links */ void Rover::gcs_data_stream_send(void) { gcs().data_stream_send(); } /* * look for incoming commands on the GCS links */ void Rover::gcs_update(void) { gcs().update(); } /** retry any deferred messages */ void Rover::gcs_retry_deferred(void) { gcs().retry_deferred(); } /* return true if we will accept this packet. Used to implement SYSID_ENFORCE */ bool GCS_MAVLINK_Rover::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg) { if (!rover.g2.sysid_enforce) { return true; } if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) { return true; } return (msg.sysid == rover.g.sysid_my_gcs); } AP_AdvancedFailsafe *GCS_MAVLINK_Rover::get_advanced_failsafe() const { #if ADVANCED_FAILSAFE == ENABLED return &rover.g2.afs; #else return nullptr; #endif } AP_VisualOdom *GCS_MAVLINK_Rover::get_visual_odom() const { #if VISUAL_ODOMETRY_ENABLED == ENABLED return &rover.g2.visual_odom; #else return nullptr; #endif } AP_Mission *GCS_MAVLINK_Rover::get_mission() { return &rover.mission; } AP_Rally *GCS_MAVLINK_Rover::get_rally() const { #if AP_RALLY == ENABLED return &rover.g2.rally; #else return nullptr; #endif } bool GCS_MAVLINK_Rover::set_mode(const uint8_t mode) { Mode *new_mode = rover.mode_from_mode_num((enum Mode::Number)mode); if (new_mode == nullptr) { return false; } return rover.set_mode(*new_mode, MODE_REASON_GCS_COMMAND); }