/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // Unit tests for the AP_Math euler code // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; #define SHOW_POLES_BREAKDOWN 0 static float rad_diff(float rad1, float rad2) { float diff = rad1 - rad2; if (diff > PI) { diff -= 2*PI; } if (diff < -PI) { diff += 2*PI; } return fabsf(diff); } static void check_result(const char *msg, float roll, float pitch, float yaw, float roll2, float pitch2, float yaw2) { if (isnan(roll2) || isnan(pitch2) || isnan(yaw2)) { hal.console->printf("%s NAN eulers roll=%f pitch=%f yaw=%f\n", msg, roll, pitch, yaw); } if (rad_diff(roll2,roll) > ToRad(179)) { // reverse all 3 roll2 += fmod(roll2+PI, 2*PI); pitch2 += fmod(pitch2+PI, 2*PI); yaw2 += fmod(yaw2+PI, 2*PI); } if (rad_diff(roll2,roll) > 0.01 || rad_diff(pitch2, pitch) > 0.01 || rad_diff(yaw2, yaw) > 0.01) { if (pitch >= PI/2 || pitch <= -PI/2 || ToDeg(rad_diff(pitch, PI/2)) < 1 || ToDeg(rad_diff(pitch, -PI/2)) < 1) { // we expect breakdown at these poles #if SHOW_POLES_BREAKDOWN hal.console->printf_P( PSTR("%s breakdown eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n"), msg, ToDeg(roll), ToDeg(roll2), ToDeg(pitch), ToDeg(pitch2), ToDeg(yaw), ToDeg(yaw2)); #endif } else { hal.console->printf_P( PSTR("%s incorrect eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n"), msg, ToDeg(roll), ToDeg(roll2), ToDeg(pitch), ToDeg(pitch2), ToDeg(yaw), ToDeg(yaw2)); } } } static void test_euler(float roll, float pitch, float yaw) { Matrix3f m; float roll2, pitch2, yaw2; m.from_euler(roll, pitch, yaw); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_euler", roll, pitch, yaw, roll2, pitch2, yaw2); } #define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0])) static const float angles[] = { 0, PI/8, PI/4, PI/2, PI, -PI/8, -PI/4, -PI/2, -PI}; void test_matrix_eulers(void) { uint8_t i, j, k; uint8_t N = ARRAY_LENGTH(angles); hal.console->println("rotation matrix unit tests\n"); for (i=0; iprintln("tests done\n"); } static void test_quaternion(float roll, float pitch, float yaw) { Quaternion q; Matrix3f m; float roll2, pitch2, yaw2; q.from_euler(roll, pitch, yaw); q.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion1", roll, pitch, yaw, roll2, pitch2, yaw2); m.from_euler(roll, pitch, yaw); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion2", roll, pitch, yaw, roll2, pitch2, yaw2); m.from_euler(roll, pitch, yaw); q.from_rotation_matrix(m); q.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion3", roll, pitch, yaw, roll2, pitch2, yaw2); q.rotation_matrix(m); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion4", roll, pitch, yaw, roll2, pitch2, yaw2); } void test_quaternion_eulers(void) { uint8_t i, j, k; uint8_t N = ARRAY_LENGTH(angles); hal.console->println("quaternion unit tests\n"); test_quaternion(PI/4, 0, 0); test_quaternion(0, PI/4, 0); test_quaternion(0, 0, PI/4); test_quaternion(-PI/4, 0, 0); test_quaternion(0, -PI/4, 0); test_quaternion(0, 0, -PI/4); test_quaternion(-PI/4, 1, 1); test_quaternion(1, -PI/4, 1); test_quaternion(1, 1, -PI/4); test_quaternion(ToRad(89), 0, 0.1); test_quaternion(0, ToRad(89), 0.1); test_quaternion(0.1, 0, ToRad(89)); test_quaternion(ToRad(91), 0, 0.1); test_quaternion(0, ToRad(91), 0.1); test_quaternion(0.1, 0, ToRad(91)); for (i=0; iprintln("tests done\n"); } static void test_conversion(float roll, float pitch, float yaw) { Quaternion q; Matrix3f m, m2; float roll2, pitch2, yaw2; float roll3, pitch3, yaw3; q.from_euler(roll, pitch, yaw); q.to_euler(&roll2, &pitch2, &yaw2); check_result("test_conversion1", roll, pitch, yaw, roll2, pitch2, yaw2); q.rotation_matrix(m); m.to_euler(&roll2, &pitch2, &yaw2); m2.from_euler(roll, pitch, yaw); m2.to_euler(&roll3, &pitch3, &yaw3); if (m.is_nan()) { hal.console->printf("NAN matrix roll=%f pitch=%f yaw=%f\n", roll, pitch, yaw); } check_result("test_conversion2", roll, pitch, yaw, roll2, pitch2, yaw2); check_result("test_conversion3", roll, pitch, yaw, roll3, pitch3, yaw3); } void test_conversions(void) { uint8_t i, j, k; uint8_t N = ARRAY_LENGTH(angles); hal.console->println("matrix/quaternion tests\n"); test_conversion(1, 1.1, 1.2); test_conversion(1, -1.1, 1.2); test_conversion(1, -1.1, -1.2); test_conversion(-1, 1.1, -1.2); test_conversion(-1, 1.1, 1.2); for (i=0; iprintln("tests done\n"); } void test_frame_transforms(void) { Vector3f v, v2; Quaternion q; Matrix3f m; hal.console->println("frame transform tests\n"); q.from_euler(ToRad(90), 0, 0); v2 = v = Vector3f(0, 0, 1); q.earth_to_body(v2); hal.console->printf("%f %f %f\n", v2.x, v2.y, v2.z); } // generate a random float between -1 and 1 static float rand_num(void) { float ret = ((unsigned)random()) % 2000000; return (ret - 1.0e6) / 1.0e6; } void test_matrix_rotate(void) { Matrix3f m1, m2, diff; Vector3f r; m1.identity(); m2.identity(); r.x = rand_num(); r.y = rand_num(); r.z = rand_num(); for (uint16_t i = 0; i<1000; i++) { // old method Matrix3f temp_matrix; temp_matrix.a.x = 0; temp_matrix.a.y = -r.z; temp_matrix.a.z = r.y; temp_matrix.b.x = r.z; temp_matrix.b.y = 0; temp_matrix.b.z = -r.x; temp_matrix.c.x = -r.y; temp_matrix.c.y = r.x; temp_matrix.c.z = 0; temp_matrix = m1 * temp_matrix; m1 += temp_matrix; // new method m2.rotate(r); // check they behave in the same way diff = m1 - m2; float err = diff.a.length() + diff.b.length() + diff.c.length(); if (err > 0) { hal.console->printf("ERROR: i=%u err=%f\n", (unsigned)i, err); } } } /* * euler angle tests */ void setup(void) { hal.console->println("euler unit tests\n"); test_conversion(0, PI, 0); test_frame_transforms(); test_conversions(); test_quaternion_eulers(); test_matrix_eulers(); test_matrix_rotate(); } void loop(void){} AP_HAL_MAIN();