// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_show (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); #if !defined( __AVR_ATmega1280__ ) static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv); #endif static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); // Command/function table for the setup menu static const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"reset", setup_factory}, {"radio", setup_radio}, {"modes", setup_flightmodes}, #if !defined( __AVR_ATmega1280__ ) {"accel", setup_accel_scale}, #endif {"compass", setup_compass}, {"declination", setup_declination}, {"battery", setup_batt_monitor}, {"show", setup_show}, {"erase", setup_erase}, }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. static int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance cliSerial->printf_P(PSTR("Setup Mode\n" "\n" "IMPORTANT: if you have not previously set this system up, use the\n" "'reset' command to initialize the EEPROM to sensible default values\n" "and then the 'radio' command to configure for your radio.\n" "\n")); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { // clear the area print_blanks(8); report_radio(); report_batt_monitor(); report_gains(); report_xtrack(); report_throttle(); report_flight_modes(); report_compass(); cliSerial->printf_P(PSTR("Raw Values\n")); print_divider(); AP_Param::show_all(); return(0); } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { int c; cliSerial->printf_P(PSTR("\nType 'Y' and hit Enter to perform factory reset, any other key to abort: ")); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Param::erase_all(); cliSerial->printf_P(PSTR("\nFACTORY RESET complete - please reset APM to continue")); //default_flight_modes(); // This will not work here. Replacement code located in init_ardupilot() for (;;) { } // note, cannot actually return here return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("\n\nRadio Setup:\n")); uint8_t i; for(i = 0; i < 100;i++){ delay(20); read_radio(); } if(g.channel_roll.radio_in < 500){ while(1){ cliSerial->printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } g.channel_roll.radio_min = g.channel_roll.radio_in; g.channel_pitch.radio_min = g.channel_pitch.radio_in; g.channel_throttle.radio_min = g.channel_throttle.radio_in; g.channel_rudder.radio_min = g.channel_rudder.radio_in; g.rc_5.radio_min = g.rc_5.radio_in; g.rc_6.radio_min = g.rc_6.radio_in; g.rc_7.radio_min = g.rc_7.radio_in; g.rc_8.radio_min = g.rc_8.radio_in; g.channel_roll.radio_max = g.channel_roll.radio_in; g.channel_pitch.radio_max = g.channel_pitch.radio_in; g.channel_throttle.radio_max = g.channel_throttle.radio_in; g.channel_rudder.radio_max = g.channel_rudder.radio_in; g.rc_5.radio_max = g.rc_5.radio_in; g.rc_6.radio_max = g.rc_6.radio_in; g.rc_7.radio_max = g.rc_7.radio_in; g.rc_8.radio_max = g.rc_8.radio_in; g.channel_roll.radio_trim = g.channel_roll.radio_in; g.channel_pitch.radio_trim = g.channel_pitch.radio_in; g.channel_rudder.radio_trim = g.channel_rudder.radio_in; g.rc_5.radio_trim = 1500; g.rc_6.radio_trim = 1500; g.rc_7.radio_trim = 1500; g.rc_8.radio_trim = 1500; cliSerial->printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: \n")); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); g.channel_roll.update_min_max(); g.channel_pitch.update_min_max(); g.channel_throttle.update_min_max(); g.channel_rudder.update_min_max(); g.rc_5.update_min_max(); g.rc_6.update_min_max(); g.rc_7.update_min_max(); g.rc_8.update_min_max(); if(cliSerial->available() > 0){ cliSerial->flush(); g.channel_roll.save_eeprom(); g.channel_pitch.save_eeprom(); g.channel_throttle.save_eeprom(); g.channel_rudder.save_eeprom(); g.rc_5.save_eeprom(); g.rc_6.save_eeprom(); g.rc_7.save_eeprom(); g.rc_8.save_eeprom(); print_done(); break; } } trim_radio(); report_radio(); return(0); } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { byte switchPosition, mode = 0; cliSerial->printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes.")); print_hit_enter(); trim_radio(); while(1){ delay(20); read_radio(); switchPosition = readSwitch(); // look for control switch change if (oldSwitchPosition != switchPosition){ // force position 5 to MANUAL if (switchPosition > 4) { flight_modes[switchPosition] = MANUAL; } // update our current mode mode = flight_modes[switchPosition]; // update the user print_switch(switchPosition, mode); // Remember switch position oldSwitchPosition = switchPosition; } // look for stick input int radioInputSwitch = radio_input_switch(); if (radioInputSwitch != 0){ mode += radioInputSwitch; while ( mode != MANUAL && mode != CIRCLE && mode != LEARNING && mode != AUTO && mode != RTL) { if (mode < MANUAL) mode = RTL; else if (mode > RTL) mode = MANUAL; else mode += radioInputSwitch; } // Override position 5 if(switchPosition > 4) mode = MANUAL; // save new mode flight_modes[switchPosition] = mode; // print new mode print_switch(switchPosition, mode); } // escape hatch if(cliSerial->available() > 0){ // save changes for (mode=0; mode<6; mode++) flight_modes[mode].save(); report_flight_modes(); print_done(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { compass.set_declination(radians(argv[1].f)); report_compass(); return 0; } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { int c; cliSerial->printf_P(PSTR("\nType 'Y' and hit Enter to erase all waypoint and parameter data, any other key to abort: ")); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); zero_eeprom(); return 0; } /* handle full accelerometer calibration via user dialog */ #if !defined( __AVR_ATmega1280__ ) static void setup_printf_P(const prog_char_t *fmt, ...) { va_list arg_list; va_start(arg_list, fmt); cliSerial->vprintf_P(fmt, arg_list); va_end(arg_list); } static void setup_wait_key(void) { // wait for user input while (!cliSerial->available()) { delay(20); } // clear input buffer while( cliSerial->available() ) { cliSerial->read(); } } static int8_t setup_accel_scale(uint8_t argc, const Menu::arg *argv) { cliSerial->println_P(PSTR("Initialising gyros")); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, delay, flash_leds, &timer_scheduler); if (ins.calibrate_accel(delay, flash_leds, setup_printf_P, setup_wait_key)) { if (g.manual_level == 0) { cliSerial->println_P(PSTR("Setting MANUAL_LEVEL to 1")); g.manual_level.set_and_save(1); } } return(0); } #endif static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { g.compass_enabled = true; } } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.compass_enabled = false; } else if (!strcmp_P(argv[1].str, PSTR("reset"))) { compass.set_offsets(0,0,0); } else { cliSerial->printf_P(PSTR("\nOptions:[on,off,reset]\n")); report_compass(); return 0; } g.compass_enabled.save(); report_compass(); return 0; } static int8_t setup_batt_monitor(uint8_t argc, const Menu::arg *argv) { if(argv[1].i >= 0 && argv[1].i <= 4){ g.battery_monitoring.set_and_save(argv[1].i); } else { cliSerial->printf_P(PSTR("\nOptions: 3-4")); } report_batt_monitor(); return 0; } /***************************************************************************/ // CLI reports /***************************************************************************/ static void report_batt_monitor() { //print_blanks(2); cliSerial->printf_P(PSTR("Batt Mointor\n")); print_divider(); if(g.battery_monitoring == 0) cliSerial->printf_P(PSTR("Batt monitoring disabled")); if(g.battery_monitoring == 3) cliSerial->printf_P(PSTR("Monitoring batt volts")); if(g.battery_monitoring == 4) cliSerial->printf_P(PSTR("Monitoring volts and current")); print_blanks(2); } static void report_radio() { //print_blanks(2); cliSerial->printf_P(PSTR("Radio\n")); print_divider(); // radio print_radio_values(); print_blanks(2); } static void report_gains() { //print_blanks(2); cliSerial->printf_P(PSTR("Gains\n")); print_divider(); cliSerial->printf_P(PSTR("servo roll:\n")); print_PID(&g.pidServoRoll); cliSerial->printf_P(PSTR("servo pitch:\n")); print_PID(&g.pidServoPitch); cliSerial->printf_P(PSTR("servo rudder:\n")); print_PID(&g.pidServoRudder); cliSerial->printf_P(PSTR("nav roll:\n")); print_PID(&g.pidNavRoll); cliSerial->printf_P(PSTR("nav pitch airspeed:\n")); print_PID(&g.pidNavPitchAirspeed); cliSerial->printf_P(PSTR("energry throttle:\n")); print_PID(&g.pidTeThrottle); cliSerial->printf_P(PSTR("nav pitch alt:\n")); print_PID(&g.pidNavPitchAltitude); print_blanks(2); } static void report_xtrack() { //print_blanks(2); cliSerial->printf_P(PSTR("Crosstrack\n")); print_divider(); // radio cliSerial->printf_P(PSTR("XTRACK: %4.2f\n" "XTRACK angle: %d\n"), (float)g.crosstrack_gain, (int)g.crosstrack_entry_angle); print_blanks(2); } static void report_throttle() { //print_blanks(2); cliSerial->printf_P(PSTR("Throttle\n")); print_divider(); cliSerial->printf_P(PSTR("min: %d\n" "max: %d\n" "cruise: %d\n" "failsafe_enabled: %d\n" "failsafe_value: %d\n"), (int)g.throttle_min, (int)g.throttle_max, (int)g.throttle_cruise, (int)g.throttle_fs_enabled, (int)g.throttle_fs_value); print_blanks(2); } static void report_compass() { //print_blanks(2); cliSerial->printf_P(PSTR("Compass: ")); switch (compass.product_id) { case AP_COMPASS_TYPE_HMC5883L: cliSerial->println_P(PSTR("HMC5883L")); break; case AP_COMPASS_TYPE_HMC5843: cliSerial->println_P(PSTR("HMC5843")); break; case AP_COMPASS_TYPE_HIL: cliSerial->println_P(PSTR("HIL")); break; default: cliSerial->println_P(PSTR("??")); break; } print_divider(); print_enabled(g.compass_enabled); // mag declination cliSerial->printf_P(PSTR("Mag Declination: %4.4f\n"), degrees(compass.get_declination())); Vector3f offsets = compass.get_offsets(); // mag offsets cliSerial->printf_P(PSTR("Mag offsets: %4.4f, %4.4f, %4.4f\n"), offsets.x, offsets.y, offsets.z); print_blanks(2); } static void report_flight_modes() { //print_blanks(2); cliSerial->printf_P(PSTR("Flight modes\n")); print_divider(); for(int i = 0; i < 6; i++ ){ print_switch(i, flight_modes[i]); } print_blanks(2); } /***************************************************************************/ // CLI utilities /***************************************************************************/ static void print_PID(PID * pid) { cliSerial->printf_P(PSTR("P: %4.3f, I:%4.3f, D:%4.3f, IMAX:%ld\n"), pid->kP(), pid->kI(), pid->kD(), (long)pid->imax()); } static void print_radio_values() { cliSerial->printf_P(PSTR("CH1: %d | %d | %d\n"), (int)g.channel_roll.radio_min, (int)g.channel_roll.radio_trim, (int)g.channel_roll.radio_max); cliSerial->printf_P(PSTR("CH2: %d | %d | %d\n"), (int)g.channel_pitch.radio_min, (int)g.channel_pitch.radio_trim, (int)g.channel_pitch.radio_max); cliSerial->printf_P(PSTR("CH3: %d | %d | %d\n"), (int)g.channel_throttle.radio_min, (int)g.channel_throttle.radio_trim, (int)g.channel_throttle.radio_max); cliSerial->printf_P(PSTR("CH4: %d | %d | %d\n"), (int)g.channel_rudder.radio_min, (int)g.channel_rudder.radio_trim, (int)g.channel_rudder.radio_max); cliSerial->printf_P(PSTR("CH5: %d | %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_trim, (int)g.rc_5.radio_max); cliSerial->printf_P(PSTR("CH6: %d | %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_trim, (int)g.rc_6.radio_max); cliSerial->printf_P(PSTR("CH7: %d | %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_trim, (int)g.rc_7.radio_max); cliSerial->printf_P(PSTR("CH8: %d | %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_trim, (int)g.rc_8.radio_max); } static void print_switch(byte p, byte m) { cliSerial->printf_P(PSTR("Pos %d: "),p); print_flight_mode(m); } static void print_done() { cliSerial->printf_P(PSTR("\nSaved Settings\n\n")); } static void print_blanks(int num) { while(num > 0){ num--; cliSerial->println(""); } } static void print_divider(void) { for (int i = 0; i < 40; i++) { cliSerial->printf_P(PSTR("-")); } cliSerial->println(""); } static int8_t radio_input_switch(void) { static int8_t bouncer = 0; if (int16_t(g.channel_roll.radio_in - g.channel_roll.radio_trim) > 100) { bouncer = 10; } if (int16_t(g.channel_roll.radio_in - g.channel_roll.radio_trim) < -100) { bouncer = -10; } if (bouncer >0) { bouncer --; } if (bouncer <0) { bouncer ++; } if (bouncer == 1 || bouncer == -1) { return bouncer; } else { return 0; } } static void zero_eeprom(void) { byte b = 0; cliSerial->printf_P(PSTR("\nErasing EEPROM\n")); for (intptr_t i = 0; i < EEPROM_MAX_ADDR; i++) { eeprom_write_byte((uint8_t *) i, b); } cliSerial->printf_P(PSTR("done\n")); } static void print_enabled(bool b) { if(b) cliSerial->printf_P(PSTR("en")); else cliSerial->printf_P(PSTR("dis")); cliSerial->printf_P(PSTR("abled\n")); } static void print_accel_offsets_and_scaling(void) { Vector3f accel_offsets = ins.get_accel_offsets(); Vector3f accel_scale = ins.get_accel_scale(); cliSerial->printf_P(PSTR("Accel offsets: %4.2f, %4.2f, %4.2f\tscale: %4.2f, %4.2f, %4.2f\n"), (float)accel_offsets.x, // Pitch (float)accel_offsets.y, // Roll (float)accel_offsets.z, // YAW (float)accel_scale.x, // Pitch (float)accel_scale.y, // Roll (float)accel_scale.z); // YAW } #endif // CLI_ENABLED