// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // // AP_IMU.cpp - IMU Sensor Library for Ardupilot Mega // Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com // // This library works with the ArduPilot Mega and "Oilpan" // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // /// @file AP_IMU.h /// @brief IMU driver for the APM oilpan #include #include #include #include "AP_IMU_Oilpan.h" // XXX secret knowledge about the APM/oilpan wiring // #define A_LED_PIN 37 #define C_LED_PIN 35 // Sensors: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ const uint8_t AP_IMU_Oilpan::_sensors[6] = { 1, 2, 0, 4, 5, 6}; // Channel assignments on the APM oilpan const int8_t AP_IMU_Oilpan::_sensor_signs[6] = { 1,-1,-1, 1,-1,-1}; // Channel orientation vs. normal // Temp compensation curve constants // These must be produced by measuring data and curve fitting // [X/Y/Z gyro][A/B/C or 0 order/1st order/2nd order constants] // const float AP_IMU_Oilpan::_gyro_temp_curve[3][3] = { {1658,0,0}, // Values to use if no temp compensation data available {1658,0,0}, // Based on average values for 20 sample boards {1658,0,0} }; void AP_IMU_Oilpan::init(Start_style style, void (*callback)(unsigned long t)) { // if we are warm-starting, load the calibration data from EEPROM and go // if (WARM_START == style) { _sensor_cal.load(); } else { // do cold-start calibration for both accel and gyro _init_gyro(callback); _init_accel(callback); // save calibration _sensor_cal.save(); } } /**************************************************/ void AP_IMU_Oilpan::init_gyro(void (*callback)(unsigned long t)) { _init_gyro(callback); _sensor_cal.save(); } void AP_IMU_Oilpan::_init_gyro(void (*callback)(unsigned long t)) { int flashcount = 0; int tc_temp; float adc_in; float prev[3] = {0,0,0}; float total_change; float max_offset; uint16_t adc_values[6]; // cold start tc_temp = _adc->Ch(_gyro_temp_ch); callback(500); Serial.printf_P(PSTR("Init Gyro")); for(int c = 0; c < 25; c++){ // Mostly we are just flashing the LED's here to tell the user to keep the IMU still digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); callback(20); _adc->Ch6(_sensors, adc_values); digitalWrite(A_LED_PIN, HIGH); digitalWrite(C_LED_PIN, LOW); callback(20); } for (int j = 0; j <= 2; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time do { // get 6 sensor values _adc->Ch6(_sensors, adc_values); for (int j = 0; j <= 2; j++){ prev[j] = _sensor_cal[j]; adc_in = adc_values[j]; adc_in -= _sensor_compensation(j, tc_temp); _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ // get 6 sensor values _adc->Ch6(_sensors, adc_values); for (int j = 0; j < 3; j++){ adc_in = adc_values[j]; // Subtract temp compensated typical gyro bias adc_in -= _sensor_compensation(j, tc_temp); // filter _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } callback(20); if(flashcount == 5) { Serial.printf_P(PSTR("*")); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } total_change = fabs(prev[0] - _sensor_cal[0]) + fabs(prev[1] - _sensor_cal[1]) +fabs(prev[2] - _sensor_cal[2]); max_offset = (_sensor_cal[0] > _sensor_cal[1]) ? _sensor_cal[0] : _sensor_cal[1]; max_offset = (max_offset > _sensor_cal[2]) ? max_offset : _sensor_cal[2]; callback(500); } while ( total_change > _gyro_total_cal_change || max_offset > _gyro_max_cal_offset); } void AP_IMU_Oilpan::save() { _sensor_cal.save(); } void AP_IMU_Oilpan::init_accel(void (*callback)(unsigned long t)) { _init_accel(callback); _sensor_cal.save(); } void AP_IMU_Oilpan::_init_accel(void (*callback)(unsigned long t)) { int flashcount = 0; float adc_in; float prev[6] = {0,0,0}; float total_change; float max_offset; uint16_t adc_values[6]; // cold start callback(500); Serial.printf_P(PSTR("Init Accel")); for (int j=3; j<=5; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time do { _adc->Ch6(_sensors, adc_values); for (int j = 3; j <= 5; j++){ prev[j] = _sensor_cal[j]; adc_in = adc_values[j]; adc_in -= _sensor_compensation(j, 0); // temperature ignored _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ // We take some readings... callback(20); _adc->Ch6(_sensors, adc_values); for (int j = 3; j < 6; j++){ adc_in = adc_values[j]; adc_in -= _sensor_compensation(j, 0); // temperature ignored _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } if(flashcount == 5) { Serial.printf_P(PSTR("*")); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } // null gravity from the Z accel _sensor_cal[5] += _gravity * _sensor_signs[5]; total_change = fabs(prev[3] - _sensor_cal[3]) + fabs(prev[4] - _sensor_cal[4]) +fabs(prev[5] - _sensor_cal[5]); max_offset = (_sensor_cal[3] > _sensor_cal[4]) ? _sensor_cal[3] : _sensor_cal[4]; max_offset = (max_offset > _sensor_cal[5]) ? max_offset : _sensor_cal[5]; callback(500); } while ( total_change > _accel_total_cal_change || max_offset > _accel_max_cal_offset); Serial.printf_P(PSTR(" ")); } /**************************************************/ // Returns the temperature compensated raw gyro value //--------------------------------------------------- float AP_IMU_Oilpan::_sensor_compensation(uint8_t channel, int temperature) const { // do gyro temperature compensation if (channel < 3) { return 1658.0; /* return _gyro_temp_curve[channel][0] + _gyro_temp_curve[channel][1] * temperature + _gyro_temp_curve[channel][2] * temperature * temperature; //*/ } // do fixed-offset accelerometer compensation return 2041.0; // Average raw value from a 20 board sample } float AP_IMU_Oilpan::_sensor_in(uint8_t channel, uint16_t adc_value, int temperature) { float adc_in; // get the compensated sensor value // adc_in = adc_value - _sensor_compensation(channel, temperature); // adjust for sensor sign and apply calibration offset // if (_sensor_signs[channel] < 0) { adc_in = _sensor_cal[channel] - adc_in; } else { adc_in = adc_in - _sensor_cal[channel]; } // constrain sensor readings to the sensible range // if (fabs(adc_in) > _adc_constraint) { adc_constraints++; // We keep track of the number of times adc_in = constrain(adc_in, -_adc_constraint, _adc_constraint); // Throw out nonsensical values } return adc_in; } bool AP_IMU_Oilpan::update(void) { int tc_temp = _adc->Ch(_gyro_temp_ch); uint16_t adc_values[6]; _sample_time = _adc->Ch6(_sensors, adc_values); // convert corrected gyro readings to delta acceleration // _gyro.x = _gyro_gain_x * _sensor_in(0, adc_values[0], tc_temp); _gyro.y = _gyro_gain_y * _sensor_in(1, adc_values[1], tc_temp); _gyro.z = _gyro_gain_z * _sensor_in(2, adc_values[2], tc_temp); // convert corrected accelerometer readings to acceleration // _accel.x = _accel_scale * _sensor_in(3, adc_values[3], tc_temp); _accel.y = _accel_scale * _sensor_in(4, adc_values[4], tc_temp); _accel.z = _accel_scale * _sensor_in(5, adc_values[5], tc_temp); _accel_filtered.x = _accel_filtered.x * .98 + _accel.x * .02; _accel_filtered.y = _accel_filtered.y * .98 + _accel.y * .02; _accel_filtered.z = _accel_filtered.z * .98 + _accel.z * .02; // always updated return true; }