/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Spektrum Telemetry library, based on AP_Frsky_Telem.cpp See https://www.spektrumrc.com/ProdInfo/Files/SPM_Telemetry_Developers_Specs.pdf */ #include "AP_Spektrum_Telem.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_AP_BLHELI_SUPPORT #include #endif #include #if HAL_SPEKTRUM_TELEM_ENABLED #define MICROSEC_PER_MINUTE 60000000 #define MAX_TEXTGEN_LEN 13 //#define SPKT_DEBUG #ifdef SPKT_DEBUG # define debug(fmt, args...) hal.console->printf("SPKT:" fmt "\n", ##args) #else # define debug(fmt, args...) do {} while(0) #endif extern const AP_HAL::HAL& hal; AP_Spektrum_Telem *AP_Spektrum_Telem::singleton; AP_Spektrum_Telem::AP_Spektrum_Telem() : AP_RCTelemetry(0) { singleton = this; } AP_Spektrum_Telem::~AP_Spektrum_Telem(void) { singleton = nullptr; } bool AP_Spektrum_Telem::init(void) { // sanity check that we are using a UART for RC input if (!AP::serialmanager().have_serial(AP_SerialManager::SerialProtocol_RCIN, 0)) { return false; } return AP_RCTelemetry::init(); } /* setup ready for passthrough telem */ void AP_Spektrum_Telem::setup_wfq_scheduler(void) { // initialize packet weights for the WFQ scheduler // priority[i] = 1/_scheduler.packet_weight[i] // rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) ) // Spektrum telemetry rate is 46Hz, so these rates must fit add_scheduler_entry(50, 100); // qos 10Hz add_scheduler_entry(50, 100); // rpm 10Hz add_scheduler_entry(50, 100); // text, 10Hz add_scheduler_entry(50, 120); // Attitude and compass 8Hz add_scheduler_entry(550, 280); // GPS 3Hz add_scheduler_entry(550, 280); // ESC 3Hz add_scheduler_entry(400, 250); // altitude 4Hz add_scheduler_entry(400, 250); // airspeed 4Hz add_scheduler_entry(700, 500); // GPS status 2Hz add_scheduler_entry(1300, 500); // batt volt 2Hz add_scheduler_entry(1300, 500); // batt curr 2Hz add_scheduler_entry(1300, 500); // batt mah 2Hz add_scheduler_entry(1300, 500); // temp 2Hz } void AP_Spektrum_Telem::adjust_packet_weight(bool queue_empty) { if (!queue_empty) { _scheduler.packet_weight[TEXT] = 50; // messages } else { _scheduler.packet_weight[TEXT] = 5000; // messages } } // WFQ scheduler bool AP_Spektrum_Telem::is_packet_ready(uint8_t idx, bool queue_empty) { bool packet_ready = false; switch (idx) { case TEXT: packet_ready = !queue_empty; break; default: packet_ready = true; break; } return packet_ready; } // WFQ scheduler void AP_Spektrum_Telem::process_packet(uint8_t idx) { // send packet switch (idx) { case QOS: // QOS calc_qos(); break; case RPM: // RPM calc_rpm(); break; case TEXT: // status text if (repeat_msg_chunk() || get_next_msg_chunk()) { send_msg_chunk(_msg_chunk); } break; case ATTITUDE: // Attitude and compass calc_attandmag(); break; case GPS_LOC: // GPS location calc_gps_location(); break; case ESC: // ESC calc_esc(); break; case ALTITUDE: // altitude calc_altitude(); break; case AIRSPEED: // airspeed calc_airspeed(); break; case GPS_STATUS: // GPS status calc_gps_status(); break; case VOLTAGE: // Battery volts calc_batt_volts(0); break; case AMPS: // Battery current calc_batt_amps(0); break; case MAH: // Battery current & mah calc_batt_mah(); break; case TEMP: // temperature calc_temperature(0); break; default: break; } } // whether to repeat the last texgen output bool AP_Spektrum_Telem::repeat_msg_chunk(void) { if (_msg_chunk.repeats == 0) { return false; } // repeat each message chunk 3 times to ensure transmission // on slow links reduce the number of duplicate chunks uint8_t extra_chunks = 2; if (_scheduler.avg_packet_rate < 20) { extra_chunks = 0; } else if (_scheduler.avg_packet_rate < 30) { extra_chunks = 1; } if (_msg_chunk.repeats++ > extra_chunks) { _msg_chunk.repeats = 0; return false; } return true; } // grabs one "chunk" (13 bytes) of the queued message to be transmitted bool AP_Spektrum_Telem::get_next_msg_chunk(void) { _msg_chunk.repeats++; if (!_statustext.available) { WITH_SEMAPHORE(_statustext.sem); if (!_statustext.queue.pop(_statustext.next)) { return false; } _statustext.available = true; // We're going to display a new message so first clear the screen _msg_chunk.linenumber = 0xFF; _msg_chunk.char_index = 0; return true; } uint8_t character = 0; memset(_msg_chunk.chunk, 0, MAX_TEXTGEN_LEN); const uint8_t message_len = sizeof(_statustext.next.text); // the message fits in an entire line of text if (message_len < MAX_TEXTGEN_LEN) { memcpy(_msg_chunk.chunk, _statustext.next.text, message_len); _msg_chunk.linenumber = 0; _statustext.available = false; return true; } // a following part of multi-line text if (_msg_chunk.linenumber == 0xFF) { _msg_chunk.linenumber = 0; } else if (_msg_chunk.char_index > 0) { _msg_chunk.linenumber++; } // skip leading whitespace while (_statustext.next.text[_msg_chunk.char_index] == ' ' && _msg_chunk.char_index < message_len) { _msg_chunk.char_index++; } uint8_t space_idx = 0; const uint8_t begin_idx = _msg_chunk.char_index; // can't fit it all on one line so wrap at an appropriate place for (int i = 0; i < MAX_TEXTGEN_LEN && _msg_chunk.char_index < message_len; i++) { character = _statustext.next.text[_msg_chunk.char_index++]; // split at the first ':' if (character == ':') { _msg_chunk.chunk[i] = 0; break; } // record the last space if we need to go back there if (character == ' ') { space_idx = _msg_chunk.char_index; } _msg_chunk.chunk[i] = character; if (!character) { break; } } // still not done, can we break at a word boundary? if (character != 0 && _msg_chunk.char_index < message_len && space_idx > 0) { _msg_chunk.char_index = space_idx; _msg_chunk.chunk[space_idx - begin_idx - 1] = 0; } // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed) if (character == 0 || _msg_chunk.char_index == message_len) { _msg_chunk.char_index = 0; // reset index to get ready to process the next message _statustext.available = false; } return true; } // prepare qos data - mandatory frame that must be sent periodically void AP_Spektrum_Telem::calc_qos() { _telem.qos.identifier = TELE_DEVICE_QOS; _telem.qos.sID = 0; _telem.qos.A = 0xFFFF; _telem.qos.B = 0xFFFF; _telem.qos.L = 0xFFFF; _telem.qos.R = 0xFFFF; _telem.qos.F = 0xFFFF; _telem.qos.H = 0xFFFF; _telem.qos.rxVoltage = 0xFFFF; _telem_pending = true; } // prepare rpm data - B/E mandatory frame that must be sent periodically void AP_Spektrum_Telem::calc_rpm() { const AP_BattMonitor &_battery = AP::battery(); _telem.rpm.identifier = TELE_DEVICE_RPM; _telem.rpm.sID = 0; // battery voltage in centivolts, can have up to a 12S battery (4.25Vx12S = 51.0V) _telem.rpm.volts = htobe16(((uint16_t)roundf(_battery.voltage(0) * 100.0f))); _telem.rpm.temperature = htobe16(int16_t(roundf(32.0f + AP::baro().get_temperature(0) * 9.0f / 5.0f))); #if AP_RPM_ENABLED const AP_RPM *rpm = AP::rpm(); float rpm_value; if (!rpm || !rpm->get_rpm(0, rpm_value) || rpm_value < 999.0f) { rpm_value = 999.0f; } _telem.rpm.microseconds = htobe16(uint16_t(roundf(MICROSEC_PER_MINUTE / rpm_value))); _telem.rpm.dBm_A = 0x7F; _telem.rpm.dBm_B = 0x7F; #endif _telem_pending = true; } void AP_Spektrum_Telem::send_msg_chunk(const MessageChunk& chunk) { memcpy(_telem.textgen.text, chunk.chunk, 13); _telem.textgen.identifier = TELE_DEVICE_TEXTGEN; _telem.textgen.lineNumber = chunk.linenumber; _telem.textgen.sID = 0; _telem_pending = true; } // prepare battery data - B/E but not supported by Spektrum void AP_Spektrum_Telem::calc_batt_volts(uint8_t instance) { const AP_BattMonitor &_battery = AP::battery(); // battery voltage in centivolts, can have up to a 12S battery (4.25Vx12S = 51.0V) _telem.hv.volts = htobe16(uint16_t(roundf(_battery.voltage(instance) * 100.0f))); _telem.hv.identifier = TELE_DEVICE_VOLTAGE; _telem.hv.sID = 0; _telem_pending = true; } // prepare battery data - B/E but not supported by Spektrum void AP_Spektrum_Telem::calc_batt_amps(uint8_t instance) { const AP_BattMonitor &_battery = AP::battery(); float current; if (!_battery.current_amps(current, instance)) { current = 0; } // Range: +/- 150A Resolution: 300A / 2048 = 0.196791 A/count _telem.amps.current = htobe16(int16_t(roundf(current * 2048.0f / 300.0f))); _telem.amps.identifier = TELE_DEVICE_AMPS; _telem.amps.sID = 0; _telem_pending = true; } // prepare battery data - L/E void AP_Spektrum_Telem::calc_batt_mah() { const AP_BattMonitor &_battery = AP::battery(); _telem.fpMAH.identifier = TELE_DEVICE_FP_MAH; _telem.fpMAH.sID = 0; float current; if (!_battery.current_amps(current, 0)) { current = 0; } _telem.fpMAH.current_A = int16_t(roundf(current * 10.0f)); // Instantaneous current, 0.1A (0-3276.6A) float used_mah; if (!_battery.consumed_mah(used_mah, 0)) { used_mah = 0; } _telem.fpMAH.chargeUsed_A = int16_t(roundf(used_mah)); // Integrated mAh used, 1mAh (0-32.766Ah) float temp; if (_battery.get_temperature(temp, 0)) { _telem.fpMAH.temp_A = uint16_t(roundf(temp * 10.0f)); // Temperature, 0.1C (0-150C, 0x7FFF indicates not populated) } else { _telem.fpMAH.temp_A = 0x7FFF; } if (!_battery.current_amps(current, 1)) { current = 0; } _telem.fpMAH.current_B = int16_t(roundf(current * 10.0f)); // Instantaneous current, 0.1A (0-3276.6A) if (!_battery.consumed_mah(used_mah, 1)) { used_mah = 0; } _telem.fpMAH.chargeUsed_B = int16_t(roundf(used_mah)); // Integrated mAh used, 1mAh (0-32.766Ah) if (_battery.get_temperature(temp, 1)) { _telem.fpMAH.temp_B = uint16_t(roundf(temp * 10.0f)); // Temperature, 0.1C (0-150C, 0x7FFF indicates not populated) } else { _telem.fpMAH.temp_B = 0x7FFF; } _telem_pending = true; } // prepare temperature data - B/E but not supported by Spektrum void AP_Spektrum_Telem::calc_temperature(uint8_t instance) { _telem.temp.temperature = htobe16(int16_t(roundf(32.0f + AP::baro().get_temperature(instance) * 9.0f / 5.0f))); _telem.temp.identifier = TELE_DEVICE_TEMPERATURE; _telem.temp.sID = 0; _telem_pending = true; } // prepare altitude data - B/E void AP_Spektrum_Telem::calc_altitude() { _telem.alt.identifier = TELE_DEVICE_ALTITUDE; _telem.alt.sID = 0; AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); float alt = 0; ahrs.get_relative_position_D_home(alt); alt = roundf(-alt * 10.0f); _telem.alt.altitude = htobe16(uint16_t(alt)); // .1m increments _max_alt = MAX(alt, _max_alt); _telem.alt.maxAltitude = htobe16(uint16_t(_max_alt)); // .1m increments _telem_pending = true; } // prepare airspeed data - B/E void AP_Spektrum_Telem::calc_airspeed() { _telem.speed.identifier = TELE_DEVICE_AIRSPEED; _telem.speed.sID = 0; AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); float speed = 0.0f; #if AP_AIRSPEED_ENABLED const AP_Airspeed *airspeed = AP::airspeed(); if (airspeed && airspeed->healthy()) { speed = roundf(airspeed->get_airspeed() * 3.6); } else { speed = roundf(AP::ahrs().groundspeed() * 3.6); } #else speed = roundf(AP::ahrs().groundspeed() * 3.6); #endif _telem.speed.airspeed = htobe16(uint16_t(speed)); // 1 km/h increments _max_speed = MAX(speed, _max_speed); _telem.speed.maxAirspeed = htobe16(uint16_t(_max_speed)); // 1 km/h increments _telem_pending = true; } // prepare attitude and compass data - L/E void AP_Spektrum_Telem::calc_attandmag(void) { _telem.attMag.identifier = TELE_DEVICE_ATTMAG; _telem.attMag.sID = 0; AP_AHRS &_ahrs = AP::ahrs(); WITH_SEMAPHORE(_ahrs.get_semaphore()); // Attitude, 3 axes. Roll is a rotation about the X Axis of the vehicle using the RHR. // Units are 0.1 deg - Pitch is a rotation about the Y Axis of the vehicle using the RHR. // Yaw is a rotation about the Z Axis of the vehicle using the RHR. _telem.attMag.attRoll = _ahrs.roll_sensor / 10; _telem.attMag.attPitch = _ahrs.pitch_sensor / 10; _telem.attMag.attYaw = _ahrs.yaw_sensor / 10; _telem.attMag.heading = (_ahrs.yaw_sensor / 10) % 3600; // Heading, 0.1deg const Vector3f& field = AP::compass().get_field(); _telem.attMag.magX = int16_t(roundf(field.x * 10.0f)); // Units are 0.1mG _telem.attMag.magY = int16_t(roundf(field.y * 10.0f)); _telem.attMag.magZ = int16_t(roundf(field.z * 10.0f)); _telem_pending = true; } // prepare gps location - L/E void AP_Spektrum_Telem::calc_gps_location() { const Location &loc = AP::gps().location(0); // use the first gps instance (same as in send_mavlink_gps_raw) const uint32_t u1e8 = 100000000, u1e7 = 10000000, u1e6 = 1000000, u1e5 = 100000, u1e4 = 10000; _telem.gpsloc.identifier = TELE_DEVICE_GPS_LOC; // Source device = 0x16 _telem.gpsloc.sID = 0; // Secondary ID uint32_t alt = (abs(loc.alt) / 10) % u1e6; _telem.gpsloc.altitudeLow = ((alt % u1e4 / 1000) << 12) | ((alt % 1000 / 100) << 8) | ((alt % 100 / 10) << 4) | (alt % 100); // BCD, meters, format 3.1 (Low order of altitude) const float lat = fabsf(loc.lat / 1.0e7f); // BCD, format 4.4, Degrees * 100 + minutes, less than 100 degrees const float lng = fabsf(loc.lng / 1.0e7f); // BCD, format 4.4 , Degrees * 100 + minutes, flag indicates > 99 degrees const uint32_t ulat = roundf((int32_t(lat) * 100.0f + (lat - int32_t(lat)) * 60.0f) * 10000.0f); const uint32_t ulng = roundf((int32_t(lng) * 100.0f + (lng - int32_t(lng)) * 60.0f) * 10000.0f); _telem.gpsloc.latitude = ((ulat % u1e8 / u1e7) << 28) | ((ulat % u1e7 / u1e6) << 24) | ((ulat % u1e6 / u1e5) << 20) | ((ulat % u1e5 / u1e4) << 16) | ((ulat % u1e4 / 1000) << 12) | ((ulat % 1000 / 100) << 8) | ((ulat % 100 / 10) << 4) | (ulat % 10); _telem.gpsloc.longitude = ((ulng % u1e8 / u1e7) << 28) | ((ulng % u1e7 / u1e6) << 24) | ((ulng % u1e6 / u1e5) << 20) | ((ulng % u1e5 / u1e4) << 16) | ((ulng % u1e4 / 1000) << 12) | ((ulng % 1000 / 100) << 8) | ((ulng % 100 / 10) << 4) | (ulng % 10); uint16_t course = uint16_t(roundf(AP::gps().ground_course() * 10.0f)); _telem.gpsloc.course = ((course % u1e5 / u1e4) << 12) | ((course % u1e4 / 1000) << 8) | ((course % 1000 / 100) << 4) | (course % 100 / 10); // BCD, 3.1 uint16_t hdop = AP::gps().get_hdop(0); _telem.gpsloc.HDOP = ((hdop % 1000 / 100) << 4) | (hdop % 100 / 10); // BCD, format 1.1 _telem.gpsloc.GPSflags = 0; if (AP::gps().status(0) >= AP_GPS::GPS_OK_FIX_3D) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_3D_FIX; } if (loc.alt < 0) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_NEGATIVE_ALT; } if ((loc.lng / 1e7) > 99) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_LONGITUDE_GREATER_99; } if (loc.lat >= 0) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_IS_NORTH; } if (loc.lng >= 0) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_IS_EAST; } if (AP::gps().status(0) > AP_GPS::NO_FIX) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_GPS_FIX_VALID; } if (AP::gps().status(0) >= AP_GPS::NO_FIX) { _telem.gpsloc.GPSflags |= GPS_INFO_FLAGS_GPS_DATA_RECEIVED; } _telem_pending = true; } // prepare gps status - L/E void AP_Spektrum_Telem::calc_gps_status() { const Location &loc = AP::gps().location(0); _telem.gpsstat.identifier = TELE_DEVICE_GPS_STATS; // Source device = 0x17 _telem.gpsstat.sID = 0; // Secondary ID uint16_t knots = roundf(AP::gps().ground_speed() * 1.94384f * 10.0f); _telem.gpsstat.speed = ((knots % 10000 / 1000) << 12) | ((knots % 1000 / 100) << 8) | ((knots % 100 / 10) << 4) | (knots % 10); // BCD, knots, format 3.1 uint16_t ms; uint8_t h, m, s; AP::rtc().get_system_clock_utc(h, m, s, ms); // BCD, format HH:MM:SS.S, format 6.1 _telem.gpsstat.UTC = ((((h / 10) << 4) | (h % 10)) << 20) | ((((m / 10) << 4) | (m % 10)) << 12) | ((((s / 10) << 4) | (s % 10)) << 4) | (ms / 100) ; uint8_t nsats = AP::gps().num_sats(); _telem.gpsstat.numSats = ((nsats / 10) << 4) | (nsats % 10); // BCD, 0-99 uint32_t alt = (abs(loc.alt) / 100000); _telem.gpsstat.altitudeHigh = ((alt / 10) << 4) | (alt % 10); // BCD, meters, format 2.0 (High order of altitude) _telem_pending = true; } // prepare ESC information - B/E void AP_Spektrum_Telem::calc_esc() { #ifdef HAVE_AP_BLHELI_SUPPORT AP_BLHeli* blh = AP_BLHeli::get_singleton(); if (blh == nullptr) { return; } AP_BLHeli::telem_data td; if (!blh->get_telem_data(0, td)) { return; } _telem.esc.identifier = TELE_DEVICE_ESC; // Source device = 0x20 _telem.esc.sID = 0; // Secondary ID _telem.esc.RPM = htobe16(uint16_t(roundf(blh->get_average_motor_frequency_hz() * 60))); // Electrical RPM, 10RPM (0-655340 RPM) 0xFFFF --> "No data" _telem.esc.voltsInput = htobe16(td.voltage); // Volts, 0.01v (0-655.34V) 0xFFFF --> "No data" _telem.esc.tempFET = htobe16(td.temperature * 10); // Temperature, 0.1C (0-6553.4C) 0xFFFF --> "No data" _telem.esc.currentMotor = htobe16(td.current); // Current, 10mA (0-655.34A) 0xFFFF --> "No data" _telem.esc.tempBEC = 0xFFFF; // Temperature, 0.1C (0-6553.4C) 0xFFFF --> "No data" _telem.esc.currentBEC = 0xFF; // BEC Current, 100mA (0-25.4A) 0xFF ----> "No data" _telem.esc.voltsBEC = 0xFF; // BEC Volts, 0.05V (0-12.70V) 0xFF ----> "No data" _telem.esc.throttle = 0xFF; // 0.5% (0-100%) 0xFF ----> "No data" _telem.esc.powerOut = 0xFF; // Power Output, 0.5% (0-127%) 0xFF ----> "No data" _telem_pending = true; #endif } /* fetch Spektrum data for an external transport, such as SRXL2 */ bool AP_Spektrum_Telem::_get_telem_data(uint8_t* data) { memset(&_telem, 0, 16); run_wfq_scheduler(); if (!_telem_pending) { return false; } memcpy(data, &_telem, 16); _telem_pending = false; return true; } /* fetch data for an external transport, such as SRXL2 */ bool AP_Spektrum_Telem::get_telem_data(uint8_t* data) { if (!singleton && !hal.util->get_soft_armed()) { // if telem data is requested when we are disarmed and don't // yet have a AP_Spektrum_Telem object then try to allocate one new AP_Spektrum_Telem(); // initialize the passthrough scheduler if (singleton) { singleton->init(); } } if (!singleton) { return false; } return singleton->_get_telem_data(data); } namespace AP { AP_Spektrum_Telem *spektrum_telem() { return AP_Spektrum_Telem::get_singleton(); } }; #endif