// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Plane.h" #include void Plane::init_barometer(void) { gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); barometer.calibrate(); gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); } void Plane::init_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.init(); #endif } /* read the rangefinder and update height estimate */ void Plane::read_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED // notify the rangefinder of our approximate altitude above ground to allow it to power on // during low-altitude flight when configured to power down during higher-altitude flight float height; #if AP_TERRAIN_AVAILABLE if (terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(height, true)) { rangefinder.set_estimated_terrain_height(height); } else #endif { // use the best available alt estimate via baro above home if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { // ensure the rangefinder is powered-on when land alt is higher than home altitude. // This is done using the target alt which we know is below us and we are sinking to it height = height_above_target(); } else { // otherwise just use the best available baro estimate above home. height = relative_altitude(); } rangefinder.set_estimated_terrain_height(height); } rangefinder.update(); if (should_log(MASK_LOG_SONAR)) Log_Write_Sonar(); rangefinder_height_update(); #endif } /* calibrate compass */ void Plane::compass_cal_update() { if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } } /* Accel calibration */ void Plane::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } /* ask airspeed sensor for a new value */ void Plane::read_airspeed(void) { if (airspeed.enabled()) { airspeed.read(); if (should_log(MASK_LOG_IMU)) { Log_Write_Airspeed(); } calc_airspeed_errors(); // supply a new temperature to the barometer from the digital // airspeed sensor if we can float temperature; if (airspeed.get_temperature(temperature)) { barometer.set_external_temperature(temperature); } } // update smoothed airspeed estimate float aspeed; if (ahrs.airspeed_estimate(&aspeed)) { smoothed_airspeed = smoothed_airspeed * 0.8f + aspeed * 0.2f; } } void Plane::zero_airspeed(bool in_startup) { airspeed.calibrate(in_startup); read_airspeed(); // update barometric calibration with new airspeed supplied temperature barometer.update_calibration(); gcs_send_text(MAV_SEVERITY_INFO,"Zero airspeed calibrated"); } // read_battery - reads battery voltage and current and invokes failsafe // should be called at 10hz void Plane::read_battery(void) { battery.read(); compass.set_current(battery.current_amps()); if (!usb_connected && hal.util->get_soft_armed() && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) { low_battery_event(); } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Plane::read_receiver_rssi(void) { receiver_rssi = rssi.read_receiver_rssi_uint8(); } /* update RPM sensors */ void Plane::rpm_update(void) { rpm_sensor.update(); if (rpm_sensor.healthy(0) || rpm_sensor.healthy(1)) { if (should_log(MASK_LOG_RC)) { DataFlash.Log_Write_RPM(rpm_sensor); } } }