// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "RCOutput_AioPRU.h"
#include
#include
#include
#include
#include
#include
#include
#include
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BLUE
#include "../../Tools/Linux_HAL_Essentials/pru/aiopru/RcAioPRU_BBBLUE_bin.h"
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_POCKET
#include "../../Tools/Linux_HAL_Essentials/pru/aiopru/RcAioPRU_POCKET_bin.h"
#else
#include "../../Tools/Linux_HAL_Essentials/pru/aiopru/RcAioPRU_BBBMINI_bin.h"
#endif
using namespace Linux;
static void catch_sigbus(int sig)
{
AP_HAL::panic("RCOutputAioPRU.cpp:SIGBUS error generated\n");
}
void RCOutput_AioPRU::init()
{
uint32_t mem_fd;
uint32_t *iram;
uint32_t *ctrl;
signal(SIGBUS,catch_sigbus);
mem_fd = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC);
pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE);
iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE);
ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE);
close(mem_fd);
// Reset PRU
*ctrl = 0;
// Load firmware
memcpy(iram, PRUcode, sizeof(PRUcode));
// Start PRU
*ctrl |= 2;
// all outputs default to 50Hz, the top level vehicle code
// overrides this when necessary
set_freq(0xFFFFFFFF, 50);
}
void RCOutput_AioPRU::set_freq(uint32_t chmask, uint16_t freq_hz)
{
uint8_t i;
uint32_t tick = TICK_PER_S / freq_hz;
for(i = 0; i < PWM_CHAN_COUNT; i++) {
if(chmask & (1U << i)) {
pwm->channel[i].time_t = tick;
}
}
}
uint16_t RCOutput_AioPRU::get_freq(uint8_t ch)
{
uint16_t ret = 0;
if(ch < PWM_CHAN_COUNT) {
ret = TICK_PER_S / pwm->channel[ch].time_t;
}
return ret;
}
void RCOutput_AioPRU::enable_ch(uint8_t ch)
{
if(ch < PWM_CHAN_COUNT) {
pwm->channelenable |= 1U << ch;
}
}
void RCOutput_AioPRU::disable_ch(uint8_t ch)
{
if(ch < PWM_CHAN_COUNT) {
pwm->channelenable &= !(1U << ch);
}
}
void RCOutput_AioPRU::write(uint8_t ch, uint16_t period_us)
{
if(ch < PWM_CHAN_COUNT) {
if (corked) {
pending_mask |= (1U << ch);
pending[ch] = period_us;
} else {
pwm->channel[ch].time_high = TICK_PER_US * period_us;
}
}
}
uint16_t RCOutput_AioPRU::read(uint8_t ch)
{
uint16_t ret = 0;
if(ch < PWM_CHAN_COUNT) {
ret = (pwm->channel[ch].time_high / TICK_PER_US);
}
return ret;
}
void RCOutput_AioPRU::read(uint16_t* period_us, uint8_t len)
{
uint8_t i;
if(len > PWM_CHAN_COUNT) {
len = PWM_CHAN_COUNT;
}
for(i = 0; i < len; i++) {
period_us[i] = pwm->channel[i].time_high / TICK_PER_US;
}
}
void RCOutput_AioPRU::cork(void)
{
corked = true;
}
void RCOutput_AioPRU::push(void)
{
if (!corked) {
return;
}
corked = false;
for (uint8_t i=0; i