#include "Rover.h" #include #if LOGGING_ENABLED == ENABLED // Write an attitude packet void Rover::Log_Write_Attitude() { float desired_pitch_cd = degrees(g2.attitude_control.get_desired_pitch()) * 100.0f; const Vector3f targets(0.0f, desired_pitch_cd, 0.0f); ahrs.Write_Attitude(targets); AP::ahrs().Log_Write(); ahrs.Write_AHRS2(); ahrs.Write_POS(); // log steering rate controller logger.Write_PID(LOG_PIDS_MSG, g2.attitude_control.get_steering_rate_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, g2.attitude_control.get_throttle_speed_pid().get_pid_info()); // log pitch control for balance bots if (is_balancebot()) { logger.Write_PID(LOG_PIDP_MSG, g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info()); } // log heel to sail control for sailboats if (rover.g2.sailboat.sail_enabled()) { logger.Write_PID(LOG_PIDR_MSG, g2.attitude_control.get_sailboat_heel_pid().get_pid_info()); } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.Log_Write_SIMSTATE(); #endif } // Write a range finder depth message void Rover::Log_Write_Depth() { // only log depth on boats if (!rover.is_boat() || !rangefinder.has_orientation(ROTATION_PITCH_270)) { return; } // get position Location loc; IGNORE_RETURN(ahrs.get_position(loc)); for (uint8_t i=0; iorientation() != ROTATION_PITCH_270 || !s->has_data()) { continue; } // check if new sensor reading has arrived const uint32_t reading_ms = s->last_reading_ms(); if (reading_ms == rangefinder_last_reading_ms[i]) { continue; } rangefinder_last_reading_ms[i] = reading_ms; float temp_C; if (!s->get_temp(temp_C)) { temp_C = 0.0f; } // @LoggerMessage: DPTH // @Description: Depth messages on boats with downwards facing range finder // @Field: TimeUS: Time since system startup // @Field: Inst: Instance // @Field: Lat: Latitude // @Field: Lng: Longitude // @Field: Depth: Depth as detected by the sensor // @Field: Temp: Temperature logger.Write("DPTH", "TimeUS,Inst,Lat,Lng,Depth,Temp", "s#DUmO", "F-GG00", "QBLLff", AP_HAL::micros64(), i, loc.lat, loc.lng, (double)(s->distance_cm() * 0.01f), temp_C); } // send water depth and temp to ground station gcs().send_message(MSG_WATER_DEPTH); } // guided mode logging struct PACKED log_GuidedTarget { LOG_PACKET_HEADER; uint64_t time_us; uint8_t type; float pos_target_x; float pos_target_y; float pos_target_z; float vel_target_x; float vel_target_y; float vel_target_z; }; // Write a Guided mode target void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) { struct log_GuidedTarget pkt = { LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG), time_us : AP_HAL::micros64(), type : target_type, pos_target_x : pos_target.x, pos_target_y : pos_target.y, pos_target_z : pos_target.z, vel_target_x : vel_target.x, vel_target_y : vel_target.y, vel_target_z : vel_target.z }; logger.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float wp_distance; float wp_bearing; float nav_bearing; uint16_t yaw; float xtrack_error; }; // Write a navigation tuning packet void Rover::Log_Write_Nav_Tuning() { struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG), time_us : AP_HAL::micros64(), wp_distance : control_mode->get_distance_to_destination(), wp_bearing : control_mode->wp_bearing(), nav_bearing : control_mode->nav_bearing(), yaw : (uint16_t)ahrs.yaw_sensor, xtrack_error : control_mode->crosstrack_error() }; logger.WriteBlock(&pkt, sizeof(pkt)); } void Rover::Log_Write_Sail() { // only log sail if present if (!rover.g2.sailboat.sail_enabled()) { return; } float wind_dir_tack = logger.quiet_nanf(); uint8_t current_tack = 0; if (rover.g2.windvane.enabled()) { wind_dir_tack = degrees(g2.windvane.get_tack_threshold_wind_dir_rad()); current_tack = uint8_t(g2.windvane.get_current_tack()); } // @LoggerMessage: SAIL // @Description: Sailboat information // @Field: TimeUS: Time since system startup // @Field: Tack: Current tack, 0 = port, 1 = starboard // @Field: TackThr: Apparent wind angle used for tack threshold // @Field: MainOut: Normalized mainsail output // @Field: WingOut: Normalized wingsail output // @Field: MastRotOut: Normalized direct-rotation mast output // @Field: VMG: Velocity made good (speed at which vehicle is making progress directly towards destination) logger.Write("SAIL", "TimeUS,Tack,TackThr,MainOut,WingOut,MastRotOut,VMG", "s-d%%%n", "F000000", "QBfffff", AP_HAL::micros64(), current_tack, (double)wind_dir_tack, (double)g2.motors.get_mainsail(), (double)g2.motors.get_wingsail(), (double)g2.motors.get_mast_rotation(), (double)g2.sailboat.get_VMG()); } struct PACKED log_Steering { LOG_PACKET_HEADER; uint64_t time_us; int16_t steering_in; float steering_out; float desired_lat_accel; float lat_accel; float desired_turn_rate; float turn_rate; }; struct PACKED log_Startup { LOG_PACKET_HEADER; uint64_t time_us; uint8_t startup_type; uint16_t command_total; }; void Rover::Log_Write_Startup(uint8_t type) { struct log_Startup pkt = { LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG), time_us : AP_HAL::micros64(), startup_type : type, command_total : mode_auto.mission.num_commands() }; logger.WriteBlock(&pkt, sizeof(pkt)); } // Write a steering packet void Rover::Log_Write_Steering() { float lat_accel = logger.quiet_nanf(); g2.attitude_control.get_lat_accel(lat_accel); struct log_Steering pkt = { LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG), time_us : AP_HAL::micros64(), steering_in : channel_steer->get_control_in(), steering_out : g2.motors.get_steering(), desired_lat_accel : control_mode->get_desired_lat_accel(), lat_accel : lat_accel, desired_turn_rate : degrees(g2.attitude_control.get_desired_turn_rate()), turn_rate : degrees(ahrs.get_yaw_rate_earth()) }; logger.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Throttle { LOG_PACKET_HEADER; uint64_t time_us; int16_t throttle_in; float throttle_out; float desired_speed; float speed; float accel_x; }; // Write a throttle control packet void Rover::Log_Write_Throttle() { const Vector3f accel = ins.get_accel(); float speed = logger.quiet_nanf(); g2.attitude_control.get_forward_speed(speed); struct log_Throttle pkt = { LOG_PACKET_HEADER_INIT(LOG_THR_MSG), time_us : AP_HAL::micros64(), throttle_in : channel_throttle->get_control_in(), throttle_out : g2.motors.get_throttle(), desired_speed : g2.attitude_control.get_desired_speed(), speed : speed, accel_x : accel.x }; logger.WriteBlock(&pkt, sizeof(pkt)); } void Rover::Log_Write_RC(void) { logger.Write_RCIN(); logger.Write_RCOUT(); if (rssi.enabled()) { logger.Write_RSSI(); } } void Rover::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by AP_Logger Log_Write_Startup(TYPE_GROUNDSTART_MSG); logger.Write_Mode(control_mode->mode_number(), control_mode_reason); ahrs.Log_Write_Home_And_Origin(); gps.Write_AP_Logger_Log_Startup_messages(); } // type and unit information can be found in // libraries/AP_Logger/Logstructure.h; search for "log_Units" for // units and "Format characters" for field type information const LogStructure Rover::log_structure[] = { LOG_COMMON_STRUCTURES, // @LoggerMessage: STRT // @Description: Startup messages // @Field: TimeUS: Time since system startup // @Field: SType: Type of startup // @Field: CTot: Total number of commands in the mission { LOG_STARTUP_MSG, sizeof(log_Startup), "STRT", "QBH", "TimeUS,SType,CTot", "s--", "F--" }, // @LoggerMessage: THR // @Description: Throttle related messages // @Field: TimeUS: Time since system startup // @Field: ThrIn: Throttle Input // @Field: ThrOut: Throttle Output // @Field: DesSpeed: Desired speed // @Field: Speed: Actual speed // @Field: AccX: Acceleration { LOG_THR_MSG, sizeof(log_Throttle), "THR", "Qhffff", "TimeUS,ThrIn,ThrOut,DesSpeed,Speed,AccX", "s--nno", "F--000" }, // @LoggerMessage: NTUN // @Description: Navigation Tuning information - e.g. vehicle destination // @URL: http://ardupilot.org/rover/docs/navigation.html // @Field: TimeUS: Time since system startup // @Field: WpDist: distance to the current navigation waypoint // @Field: WpBrg: bearing to the current navigation waypoint // @Field: DesYaw: the vehicle's desired heading // @Field: Yaw: the vehicle's current heading // @Field: XTrack: the vehicle's current distance from the current travel segment { LOG_NTUN_MSG, sizeof(log_Nav_Tuning), "NTUN", "QfffHf", "TimeUS,WpDist,WpBrg,DesYaw,Yaw,XTrack", "smhhdm", "F000B0" }, // @LoggerMessage: STER // @Description: Steering related messages // @Field: TimeUS: Time since system startup // @Field: SteerIn: Steering input // @Field: SteerOut: Normalized steering output // @Field: DesLatAcc: Desired lateral acceleration // @Field: LatAcc: Actual lateral acceleration // @Field: DesTurnRate: Desired turn rate // @Field: TurnRate: Actual turn rate { LOG_STEERING_MSG, sizeof(log_Steering), "STER", "Qhfffff", "TimeUS,SteerIn,SteerOut,DesLatAcc,LatAcc,DesTurnRate,TurnRate", "s--ookk", "F--0000" }, // @LoggerMessage: GUID // @Description: Guided mode target information // @Field: TimeUS: Time since system startup // @Field: Type: Type of guided mode // @Field: pX: Target position, X-Axis // @Field: pY: Target position, Y-Axis // @Field: pZ: Target position, Z-Axis // @Field: vX: Target velocity, X-Axis // @Field: vY: Target velocity, Y-Axis // @Field: vZ: Target velocity, Z-Axis { LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget), "GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ", "s-mmmnnn", "F-000000" }, }; void Rover::log_init(void) { logger.Init(log_structure, ARRAY_SIZE(log_structure)); } #else // LOGGING_ENABLED // dummy functions void Rover::Log_Write_Attitude() {} void Rover::Log_Write_Depth() {} void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {} void Rover::Log_Write_Nav_Tuning() {} void Rover::Log_Write_Sail() {} void Rover::Log_Write_Startup(uint8_t type) {} void Rover::Log_Write_Throttle() {} void Rover::Log_Write_RC(void) {} void Rover::Log_Write_Steering() {} void Rover::Log_Write_Vehicle_Startup_Messages() {} #endif // LOGGING_ENABLED