/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Landing_Deepstall.cpp - Landing logic handler for ArduPlane for deepstall landings */ #include "AP_Landing.h" #include #include #include // table of user settable parameters for deepstall const AP_Param::GroupInfo AP_Landing_Deepstall::var_info[] = { // @Param: DS_V_FWD // @DisplayName: Deepstall forward velocity // @Description: The forward velocity of the aircraft while stalled // @Range: 0 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("V_FWD", 1, AP_Landing_Deepstall, forward_speed, 1), // @Param: DS_SLOPE_A // @DisplayName: Deepstall slope a // @Description: The a component of distance = a*wind + b // @User: Advanced AP_GROUPINFO("SLOPE_A", 2, AP_Landing_Deepstall, slope_a, 1), // @Param: DS_SLOPE_B // @DisplayName: Deepstall slope b // @Description: The a component of distance = a*wind + b // @User: Advanced AP_GROUPINFO("SLOPE_B", 3, AP_Landing_Deepstall, slope_b, 1), // @Param: DS_APP_EXT // @DisplayName: Deepstall approach extension // @Description: The forward velocity of the aircraft while stalled // @Range: 10 200 // @Units: meters // @User: Advanced AP_GROUPINFO("APP_EXT", 4, AP_Landing_Deepstall, approach_extension, 50), // @Param: DS_V_DWN // @DisplayName: Deepstall veloicty down // @Description: The downward velocity of the aircraft while stalled // @Range: 0 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("V_DWN", 5, AP_Landing_Deepstall, down_speed, 2), // @Param: DS_SLEW_SPD // @DisplayName: Deepstall slew speed // @Description: The speed at which the elevator slews to deepstall // @Range: 0 2 // @Units: seconds // @User: Advanced AP_GROUPINFO("SLEW_SPD", 6, AP_Landing_Deepstall, slew_speed, 0.5), // @Param: DS_ELEV_PWM // @DisplayName: Deepstall elevator PWM // @Description: The PWM value for the elevator at full deflection in deepstall // @Range: 900 2100 // @Units: PWM // @User: Advanced AP_GROUPINFO("ELEV_PWM", 7, AP_Landing_Deepstall, elevator_pwm, 1500), // @Param: DS_ARSP_MAX // @DisplayName: Deepstall enabled airspeed // @Description: The maximum aispeed where the deepstall steering controller is allowed to have control // @Range: 5 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("ARSP_MAX", 8, AP_Landing_Deepstall, handoff_airspeed, 15.0), // @Param: DS_ARSP_MIN // @DisplayName: Deepstall minimum derating airspeed // @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control // @Range: 5 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("ARSP_MIN", 9, AP_Landing_Deepstall, handoff_lower_limit_airspeed, 10.0), // @Param: DS_L1 // @DisplayName: Deepstall L1 period // @Description: Deepstall L1 navigational controller period // @Range: 5 50 // @Units: meters // @User: Advanced AP_GROUPINFO("L1", 10, AP_Landing_Deepstall, L1_period, 30.0), // @Param: DS_L1_I // @DisplayName: Deepstall L1 I gain // @Description: Deepstall L1 integratior gain // @Range: 0 1 // @User: Advanced AP_GROUPINFO("L1_I", 11, AP_Landing_Deepstall, L1_i, 0), // @Param: DS_YAW_LIM // @DisplayName: Deepstall yaw rate limit // @Description: The yaw rate limit while navigating in deepstall // @Range: 0 90 // @Units degrees per second // @User: Advanced AP_GROUPINFO("YAW_LIM", 12, AP_Landing_Deepstall, yaw_rate_limit, 10), // @Param: DS_L1_TCON // @DisplayName: Deepstall L1 time constant // @Description: Time constant for deepstall L1 control // @Range: 0 1 // @Units seconds // @User: Advanced AP_GROUPINFO("L1_TCON", 13, AP_Landing_Deepstall, time_constant, 0.4), // @Group: DS_ // @Path: ../PID/PID.cpp AP_SUBGROUPINFO(ds_PID, "", 13, AP_Landing_Deepstall, PID), AP_GROUPEND }; // if DEBUG_PRINTS is defined statustexts will be sent to the GCS for debug purposes //#define DEBUG_PRINTS void AP_Landing_Deepstall::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude) { stage = DEEPSTALL_STAGE_FLY_TO_LANDING; ds_PID.reset_I(); // load the landing point in, the rest of path building is deferred for a better wind estimate memcpy(&landing_point, &cmd.content.location, sizeof(Location)); } // currently identical to the slope aborts void AP_Landing_Deepstall::verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed) { // when aborting a landing, mimic the verify_takeoff with steering hold. Once // the altitude has been reached, restart the landing sequence throttle_suppressed = false; landing.nav_controller->update_heading_hold(get_bearing_cd(prev_WP_loc, next_WP_loc)); } /* update navigation for landing */ bool AP_Landing_Deepstall::verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range) { switch (stage) { case DEEPSTALL_STAGE_FLY_TO_LANDING: if (get_distance(current_loc, landing_point) > 2 * landing.aparm.loiter_radius) { landing.nav_controller->update_waypoint(current_loc, landing_point); return false; } stage = DEEPSTALL_STAGE_ESTIMATE_WIND; loiter_sum_cd = 0; // reset the loiter counter // no break case DEEPSTALL_STAGE_ESTIMATE_WIND: { landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1); if (!landing.nav_controller->reached_loiter_target() || (fabsf(height) > DEEPSTALL_LOITER_ALT_TOLERANCE)) { // wait until the altitude is correct before considering a breakout return false; } // only count loiter progress when within the target altitude int32_t target_bearing = landing.nav_controller->target_bearing_cd(); int32_t delta = wrap_180_cd(target_bearing - last_target_bearing); if (delta > 0) { // only accumulate turns in the correct direction loiter_sum_cd += delta; } last_target_bearing = target_bearing; if (loiter_sum_cd < 36000) { // wait until we've done at least one complete loiter at the correct altitude landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1); return false; } stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT; //compute optimal path for landing build_approach_path(); // no break } case DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT: if (!verify_breakout(current_loc, arc_entry, height)) { landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1); return false; } stage = DEEPSTALL_STAGE_FLY_TO_ARC; memcpy(&breakout_location, ¤t_loc, sizeof(Location)); // no break case DEEPSTALL_STAGE_FLY_TO_ARC: if (get_distance(current_loc, arc_entry) > 2 * landing.aparm.loiter_radius) { landing.nav_controller->update_waypoint(breakout_location, arc_entry); return false; } stage = DEEPSTALL_STAGE_ARC; // no break case DEEPSTALL_STAGE_ARC: { Vector2f groundspeed = landing.ahrs.groundspeed_vector(); if (!landing.nav_controller->reached_loiter_target() || (fabsf(wrap_180(target_heading_deg - degrees(atan2f(-groundspeed.y, -groundspeed.x) + M_PI))) >= 10.0f)) { landing.nav_controller->update_loiter(arc, landing.aparm.loiter_radius, 1); return false; } stage = DEEPSTALL_STAGE_APPROACH; } // no break case DEEPSTALL_STAGE_APPROACH: { Location entry_point; landing.nav_controller->update_waypoint(arc_exit, extended_approach); float relative_alt_D; landing.ahrs.get_relative_position_D_home(relative_alt_D); const float travel_distance = predict_travel_distance(landing.ahrs.wind_estimate(), -relative_alt_D); memcpy(&entry_point, &landing_point, sizeof(Location)); location_update(entry_point, target_heading_deg + 180.0, travel_distance); if (!location_passed_point(current_loc, arc_exit, entry_point)) { if (location_passed_point(current_loc, arc_exit, extended_approach)) { // this should never happen, but prevent against an indefinite fly away stage = DEEPSTALL_STAGE_FLY_TO_LANDING; } return false; } stage = DEEPSTALL_STAGE_LAND; stall_entry_time = AP_HAL::millis(); const SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator); if (elevator != nullptr) { // take the last used elevator angle as the starting deflection // don't worry about bailing here if the elevator channel can't be found // that will be handled within override_servos initial_elevator_pwm = elevator->get_output_pwm(); } L1_xtrack_i = 0; // reset the integrators } // no break case DEEPSTALL_STAGE_LAND: // while in deepstall the only thing verify needs to keep the extended approach point sufficently far away landing.nav_controller->update_waypoint(current_loc, extended_approach); return false; default: return true; } } bool AP_Landing_Deepstall::override_servos(void) { if (!(stage == DEEPSTALL_STAGE_LAND)) { return false; } SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator); if (elevator == nullptr) { // deepstalls are impossible without these channels, abort the process GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "Deepstall: Unable to find the elevator channels"); request_go_around(); return false; } // calculate the progress on slewing the elevator float slew_progress = 1.0f; if (slew_speed > 0) { slew_progress = (AP_HAL::millis() - stall_entry_time) / (100.0f * slew_speed); slew_progress = constrain_float (slew_progress, 0.0f, 1.0f); } // mix the elevator to the correct value elevator->set_output_pwm(linear_interpolate(initial_elevator_pwm, elevator_pwm, slew_progress, 0.0f, 1.0f)); // use the current airspeed to dictate the travel limits float airspeed; landing.ahrs.airspeed_estimate(&airspeed); // only allow the deepstall steering controller to run below the handoff airspeed if (slew_progress >= 1.0f || airspeed <= handoff_airspeed) { // run the steering conntroller float pid = update_steering(); float travel_limit = constrain_float((handoff_airspeed - airspeed) / (handoff_airspeed - handoff_lower_limit_airspeed) * 0.5f + 0.5f, 0.5f, 1.0f); float output = constrain_float(pid, -travel_limit, travel_limit); SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, output*4500); SRV_Channels::set_output_scaled(SRV_Channel::k_aileron_with_input, output*4500); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, output*4500); } else { // allow the normal servo control of the channel SRV_Channels::set_output_scaled(SRV_Channel::k_aileron_with_input, SRV_Channels::get_output_scaled(SRV_Channel::k_aileron)); } // hand off rudder control to deepstall controlled return true; } bool AP_Landing_Deepstall::request_go_around(void) { landing.flags.commanded_go_around = true; return true; } bool AP_Landing_Deepstall::is_throttle_suppressed(void) const { return stage == DEEPSTALL_STAGE_LAND; } bool AP_Landing_Deepstall::get_target_altitude_location(Location &location) { memcpy(&location, &landing_point, sizeof(Location)); return true; } int32_t AP_Landing_Deepstall::get_target_airspeed_cm(void) const { if (stage == DEEPSTALL_STAGE_APPROACH || stage == DEEPSTALL_STAGE_LAND) { return landing.pre_flare_airspeed * 100; } else { return landing.aparm.airspeed_cruise_cm; } } const DataFlash_Class::PID_Info& AP_Landing_Deepstall::get_pid_info(void) const { return ds_PID.get_pid_info(); } void AP_Landing_Deepstall::build_approach_path(void) { Vector3f wind = landing.ahrs.wind_estimate(); // TODO: Support a user defined approach heading target_heading_deg = (degrees(atan2f(-wind.y, -wind.x))); memcpy(&extended_approach, &landing_point, sizeof(Location)); memcpy(&arc_exit, &landing_point, sizeof(Location)); //extend the approach point to 1km away so that there is always a navigational target location_update(extended_approach, target_heading_deg, 1000.0); float expected_travel_distance = predict_travel_distance(wind, landing_point.alt / 100); float approach_extension_m = expected_travel_distance + approach_extension; // an approach extension of 0 can result in a divide by 0 if (fabsf(approach_extension_m) < 1.0f) { approach_extension_m = 1.0f; } location_update(arc_exit, target_heading_deg + 180, approach_extension_m); memcpy(&arc, &arc_exit, sizeof(Location)); memcpy(&arc_entry, &arc_exit, sizeof(Location)); // TODO: Support loitering on either side of the approach path location_update(arc, target_heading_deg + 90.0, landing.aparm.loiter_radius); location_update(arc_entry, target_heading_deg + 90.0, landing.aparm.loiter_radius * 2); #ifdef DEBUG_PRINTS // TODO: Send this information via a MAVLink packet GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Arc: %3.8f %3.8f", (double)(arc.lat / 1e7),(double)( arc.lng / 1e7)); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Loiter en: %3.8f %3.8f", (double)(arc_entry.lat / 1e7), (double)(arc_entry.lng / 1e7)); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Loiter ex: %3.8f %3.8f", (double)(arc_exit.lat / 1e7), (double)(arc_exit.lng / 1e7)); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Extended: %3.8f %3.8f", (double)(extended_approach.lat / 1e7), (double)(extended_approach.lng / 1e7)); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension_m, (double)expected_travel_distance); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)target_heading_deg); #endif // DEBUG_PRINTS } float AP_Landing_Deepstall::predict_travel_distance(const Vector3f wind, const float height) const { bool reverse = false; float course = radians(target_heading_deg); // a forward speed of 0 will result in a divide by 0 float forward_speed_ms = MAX(forward_speed, 0.1f); Vector2f wind_vec(wind.x, wind.y); // work with the 2D component of wind float wind_length = MAX(wind_vec.length(), 0.05f); // always assume a slight wind to avoid divide by 0 Vector2f course_vec(cosf(course), sinf(course)); float offset = course + atan2f(-wind.y, -wind.x) + M_PI; // estimator for how far the aircraft will travel while entering the stall float stall_distance = slope_a * wind_length * cosf(offset) + slope_b; float theta = acosf(constrain_float((wind_vec * course_vec) / wind_length, -1.0f, 1.0f)); if ((course_vec % wind_vec) > 0) { reverse = true; theta *= -1; } float cross_component = sinf(theta) * wind_length; float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed_ms, -1.0f, 1.0f)); if (reverse) { estimated_crab_angle *= -1; } float estimated_forward = cosf(estimated_crab_angle) * forward_speed_ms + cosf(theta) * wind_length; #ifdef DEBUG_PRINTS GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Predict: %f %f", stall_distance, estimated_forward * height / down_speed + stall_distance); #endif // DEBUG_PRINTS return estimated_forward * height / down_speed + stall_distance; } bool AP_Landing_Deepstall::verify_breakout(const Location ¤t_loc, const Location &target_loc, const float height_error) const { Vector2f location_delta = location_diff(current_loc, target_loc); const float heading_error = degrees(landing.ahrs.groundspeed_vector().angle(location_delta)); // Check to see if the the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg) // of margin so that the altitude to be within 5 meters of desired if (heading_error <= 10.0 && fabsf(height_error) < DEEPSTALL_LOITER_ALT_TOLERANCE) { // Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp return true; } return false; } float AP_Landing_Deepstall::update_steering() { Location current_loc; if (!landing.ahrs.get_position(current_loc)) { // panic if no position source is available // continue the but target just holding the wings held level as deepstall should be a minimal energy // configuration on the aircraft, and if a position isn't available aborting would be worse GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "Deepstall: No position available. Attempting to hold level"); memcpy(¤t_loc, &landing_point, sizeof(Location)); } uint32_t time = AP_HAL::millis(); float dt = constrain_float(time - last_time, (uint32_t)10UL, (uint32_t)200UL) / 1000.0; last_time = time; Vector2f ab = location_diff(arc_exit, extended_approach); ab.normalize(); Vector2f a_air = location_diff(arc_exit, current_loc); float crosstrack_error = a_air % ab; float sine_nu1 = constrain_float(crosstrack_error / MAX(L1_period, 0.1f), -0.7071f, 0.7107f); float nu1 = asinf(sine_nu1); if (L1_i > 0) { L1_xtrack_i += nu1 * L1_i / dt; L1_xtrack_i = constrain_float(L1_xtrack_i, -0.5f, 0.5f); nu1 += L1_xtrack_i; } float desired_change = wrap_PI(radians(target_heading_deg) + nu1 - landing.ahrs.yaw); float yaw_rate = landing.ahrs.get_gyro().z; float yaw_rate_limit_rps = radians(yaw_rate_limit); float error = wrap_PI(constrain_float(desired_change / time_constant, -yaw_rate_limit_rps, yaw_rate_limit_rps) - yaw_rate); #ifdef DEBUG_PRINTS GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "x: %f e: %f r: %f d: %f", (double)crosstrack_error, (double)error, (double)degrees(yaw_rate), (double)location_diff(current_loc, landing_point).length()); #endif // DEBUG_PRINTS return ds_PID.get_pid(error); }