#include "Copter.h" #include #if ADSB_ENABLED == ENABLED void Copter::avoidance_adsb_update(void) { adsb.update(); avoidance_adsb.update(); } #include MAV_COLLISION_ACTION AP_Avoidance_Copter::handle_avoidance(const AP_Avoidance::Obstacle *obstacle, MAV_COLLISION_ACTION requested_action) { MAV_COLLISION_ACTION actual_action = requested_action; bool failsafe_state_change = false; // check for changes in failsafe if (!copter.failsafe.adsb) { copter.failsafe.adsb = true; failsafe_state_change = true; // record flight mode in case it's required for the recovery prev_control_mode = copter.control_mode; } // take no action in some flight modes if (copter.control_mode == LAND || #if MODE_THROW_ENABLED == ENABLED copter.control_mode == THROW || #endif copter.control_mode == FLIP) { actual_action = MAV_COLLISION_ACTION_NONE; } // if landed and we will take some kind of action, just disarm if ((actual_action > MAV_COLLISION_ACTION_REPORT) && copter.should_disarm_on_failsafe()) { copter.arming.disarm(); actual_action = MAV_COLLISION_ACTION_NONE; } else { // take action based on requested action switch (actual_action) { case MAV_COLLISION_ACTION_RTL: // attempt to switch to RTL, if this fails (i.e. flying in manual mode with bad position) do nothing if (failsafe_state_change) { if (!copter.set_mode(RTL, MODE_REASON_AVOIDANCE)) { actual_action = MAV_COLLISION_ACTION_NONE; } } break; case MAV_COLLISION_ACTION_HOVER: // attempt to switch to Loiter, if this fails (i.e. flying in manual mode with bad position) do nothing if (failsafe_state_change) { if (!copter.set_mode(LOITER, MODE_REASON_AVOIDANCE)) { actual_action = MAV_COLLISION_ACTION_NONE; } } break; case MAV_COLLISION_ACTION_ASCEND_OR_DESCEND: // climb or descend to avoid obstacle if (!handle_avoidance_vertical(obstacle, failsafe_state_change)) { actual_action = MAV_COLLISION_ACTION_NONE; } break; case MAV_COLLISION_ACTION_MOVE_HORIZONTALLY: // move horizontally to avoid obstacle if (!handle_avoidance_horizontal(obstacle, failsafe_state_change)) { actual_action = MAV_COLLISION_ACTION_NONE; } break; case MAV_COLLISION_ACTION_MOVE_PERPENDICULAR: if (!handle_avoidance_perpendicular(obstacle, failsafe_state_change)) { actual_action = MAV_COLLISION_ACTION_NONE; } break; // unsupported actions and those that require no response case MAV_COLLISION_ACTION_NONE: return actual_action; case MAV_COLLISION_ACTION_REPORT: default: break; } } if (failsafe_state_change) { AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_ADSB, LogErrorCode(actual_action)); } // return with action taken return actual_action; } void AP_Avoidance_Copter::handle_recovery(uint8_t recovery_action) { // check we are coming out of failsafe if (copter.failsafe.adsb) { copter.failsafe.adsb = false; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_ADSB, LogErrorCode::ERROR_RESOLVED); // restore flight mode if requested and user has not changed mode since if (copter.control_mode_reason == MODE_REASON_AVOIDANCE) { switch (recovery_action) { case AP_AVOIDANCE_RECOVERY_REMAIN_IN_AVOID_ADSB: // do nothing, we'll stay in the AVOID_ADSB mode which is guided which will loiter forever break; case AP_AVOIDANCE_RECOVERY_RESUME_PREVIOUS_FLIGHTMODE: set_mode_else_try_RTL_else_LAND(prev_control_mode); break; case AP_AVOIDANCE_RECOVERY_RTL: set_mode_else_try_RTL_else_LAND(RTL); break; case AP_AVOIDANCE_RECOVERY_RESUME_IF_AUTO_ELSE_LOITER: if (prev_control_mode == AUTO) { set_mode_else_try_RTL_else_LAND(AUTO); } break; default: break; } // switch } } } void AP_Avoidance_Copter::set_mode_else_try_RTL_else_LAND(control_mode_t mode) { if (!copter.set_mode(mode, MODE_REASON_AVOIDANCE_RECOVERY)) { // on failure RTL or LAND if (!copter.set_mode(RTL, MODE_REASON_AVOIDANCE_RECOVERY)) { copter.set_mode(LAND, MODE_REASON_AVOIDANCE_RECOVERY); } } } // check flight mode is avoid_adsb bool AP_Avoidance_Copter::check_flightmode(bool allow_mode_change) { // ensure copter is in avoid_adsb mode if (allow_mode_change && copter.control_mode != AVOID_ADSB) { if (!copter.set_mode(AVOID_ADSB, MODE_REASON_AVOIDANCE)) { // failed to set mode so exit immediately return false; } } // check flight mode return (copter.control_mode == AVOID_ADSB); } bool AP_Avoidance_Copter::handle_avoidance_vertical(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change) { // ensure copter is in avoid_adsb mode if (!check_flightmode(allow_mode_change)) { return false; } // decide on whether we should climb or descend bool should_climb = false; Location my_loc; if (_ahrs.get_position(my_loc)) { should_climb = my_loc.alt > obstacle->_location.alt; } // get best vector away from obstacle Vector3f velocity_neu; if (should_climb) { velocity_neu.z = copter.wp_nav->get_default_speed_up(); } else { velocity_neu.z = -copter.wp_nav->get_default_speed_down(); // do not descend if below RTL alt if (copter.current_loc.alt < copter.g.rtl_altitude) { velocity_neu.z = 0.0f; } } // send target velocity copter.mode_avoid_adsb.set_velocity(velocity_neu); return true; } bool AP_Avoidance_Copter::handle_avoidance_horizontal(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change) { // ensure copter is in avoid_adsb mode if (!check_flightmode(allow_mode_change)) { return false; } // get best vector away from obstacle Vector3f velocity_neu; if (get_vector_perpendicular(obstacle, velocity_neu)) { // remove vertical component velocity_neu.z = 0.0f; // check for divide by zero if (is_zero(velocity_neu.x) && is_zero(velocity_neu.y)) { return false; } // re-normalise velocity_neu.normalize(); // convert horizontal components to velocities velocity_neu.x *= copter.wp_nav->get_default_speed_xy(); velocity_neu.y *= copter.wp_nav->get_default_speed_xy(); // send target velocity copter.mode_avoid_adsb.set_velocity(velocity_neu); return true; } // if we got this far we failed to set the new target return false; } bool AP_Avoidance_Copter::handle_avoidance_perpendicular(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change) { // ensure copter is in avoid_adsb mode if (!check_flightmode(allow_mode_change)) { return false; } // get best vector away from obstacle Vector3f velocity_neu; if (get_vector_perpendicular(obstacle, velocity_neu)) { // convert horizontal components to velocities velocity_neu.x *= copter.wp_nav->get_default_speed_xy(); velocity_neu.y *= copter.wp_nav->get_default_speed_xy(); // use up and down waypoint speeds if (velocity_neu.z > 0.0f) { velocity_neu.z *= copter.wp_nav->get_default_speed_up(); } else { velocity_neu.z *= copter.wp_nav->get_default_speed_down(); // do not descend if below RTL alt if (copter.current_loc.alt < copter.g.rtl_altitude) { velocity_neu.z = 0.0f; } } // send target velocity copter.mode_avoid_adsb.set_velocity(velocity_neu); return true; } // if we got this far we failed to set the new target return false; } #endif