// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- static void default_dead_zones() { g.rc_1.set_default_dead_zone(30); g.rc_2.set_default_dead_zone(30); #if FRAME_CONFIG == HELI_FRAME g.rc_3.set_default_dead_zone(10); g.rc_4.set_default_dead_zone(15); g.rc_8.set_default_dead_zone(10); #else g.rc_3.set_default_dead_zone(30); g.rc_4.set_default_dead_zone(40); #endif g.rc_6.set_default_dead_zone(0); } static void init_rc_in() { // set rc channel ranges g.rc_1.set_angle(ROLL_PITCH_INPUT_MAX); g.rc_2.set_angle(ROLL_PITCH_INPUT_MAX); g.rc_3.set_range(g.throttle_min, g.throttle_max); g.rc_4.set_angle(4500); g.rc_1.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); g.rc_2.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); g.rc_4.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); #if FRAME_CONFIG == SINGLE_FRAME // we set four servos to angle g.single_servo_1.set_type(RC_CHANNEL_TYPE_ANGLE); g.single_servo_2.set_type(RC_CHANNEL_TYPE_ANGLE); g.single_servo_3.set_type(RC_CHANNEL_TYPE_ANGLE); g.single_servo_4.set_type(RC_CHANNEL_TYPE_ANGLE); g.single_servo_1.set_angle(DEFAULT_ANGLE_MAX); g.single_servo_2.set_angle(DEFAULT_ANGLE_MAX); g.single_servo_3.set_angle(DEFAULT_ANGLE_MAX); g.single_servo_4.set_angle(DEFAULT_ANGLE_MAX); #endif //set auxiliary servo ranges g.rc_5.set_range(0,1000); g.rc_6.set_range(0,1000); g.rc_7.set_range(0,1000); g.rc_8.set_range(0,1000); // set default dead zones default_dead_zones(); } // init_rc_out -- initialise motors and check if pilot wants to perform ESC calibration static void init_rc_out() { motors.set_update_rate(g.rc_speed); motors.set_frame_orientation(g.frame_orientation); motors.Init(); // motor initialisation motors.set_min_throttle(g.throttle_min); for(uint8_t i = 0; i < 5; i++) { delay(20); read_radio(); } // we want the input to be scaled correctly g.rc_3.set_range_out(0,1000); // full throttle means to enter ESC calibration if(g.rc_3.control_in >= (g.throttle_max - 50)) { if(g.esc_calibrate == 0) { // we will enter esc_calibrate mode on next reboot g.esc_calibrate.set_and_save(1); // display message on console cliSerial->printf_P(PSTR("Entering ESC Calibration: please restart APM.\n")); // turn on esc calibration notification AP_Notify::flags.esc_calibration = true; // block until we restart while(1) { delay(5); } }else{ cliSerial->printf_P(PSTR("ESC Calibration active: passing throttle through to ESCs.\n")); // clear esc flag g.esc_calibrate.set_and_save(0); // pass through user throttle to escs init_esc(); } }else{ // did we abort the calibration? if(g.esc_calibrate == 1) g.esc_calibrate.set_and_save(0); } // enable output to motors pre_arm_rc_checks(); if (ap.pre_arm_rc_check) { output_min(); } } // output_min - enable and output lowest possible value to motors void output_min() { // enable motors motors.enable(); motors.output_min(); } #define FAILSAFE_RADIO_TIMEOUT_MS 2000 // 2 seconds static void read_radio() { static uint32_t last_update = 0; if (hal.rcin->valid_channels() > 0) { last_update = millis(); ap.new_radio_frame = true; uint16_t periods[8]; hal.rcin->read(periods,8); g.rc_1.set_pwm(periods[rcmap.roll()-1]); g.rc_2.set_pwm(periods[rcmap.pitch()-1]); set_throttle_and_failsafe(periods[rcmap.throttle()-1]); g.rc_4.set_pwm(periods[rcmap.yaw()-1]); g.rc_5.set_pwm(periods[4]); g.rc_6.set_pwm(periods[5]); g.rc_7.set_pwm(periods[6]); g.rc_8.set_pwm(periods[7]); // flag we must have an rc receiver attached if (!failsafe.rc_override_active) { ap.rc_receiver_present = true; } }else{ uint32_t elapsed = millis() - last_update; // turn on throttle failsafe if no update from ppm encoder for 2 seconds if ((elapsed >= FAILSAFE_RADIO_TIMEOUT_MS) && g.failsafe_throttle && motors.armed() && !failsafe.radio) { Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME); set_failsafe_radio(true); } } } #define FS_COUNTER 3 // radio failsafe kicks in after 3 consecutive throttle values below failsafe_throttle_value static void set_throttle_and_failsafe(uint16_t throttle_pwm) { // if failsafe not enabled pass through throttle and exit if(g.failsafe_throttle == FS_THR_DISABLED) { g.rc_3.set_pwm(throttle_pwm); return; } //check for low throttle value if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) { // if we are already in failsafe or motors not armed pass through throttle and exit if (failsafe.radio || !motors.armed()) { g.rc_3.set_pwm(throttle_pwm); return; } // check for 3 low throttle values // Note: we do not pass through the low throttle until 3 low throttle values are recieved failsafe.radio_counter++; if( failsafe.radio_counter >= FS_COUNTER ) { failsafe.radio_counter = FS_COUNTER; // check to ensure we don't overflow the counter set_failsafe_radio(true); g.rc_3.set_pwm(throttle_pwm); // pass through failsafe throttle } }else{ // we have a good throttle so reduce failsafe counter failsafe.radio_counter--; if( failsafe.radio_counter <= 0 ) { failsafe.radio_counter = 0; // check to ensure we don't underflow the counter // disengage failsafe after three (nearly) consecutive valid throttle values if (failsafe.radio) { set_failsafe_radio(false); } } // pass through throttle g.rc_3.set_pwm(throttle_pwm); } } static void trim_radio() { for (uint8_t i = 0; i < 30; i++) { read_radio(); } g.rc_1.trim(); // roll g.rc_2.trim(); // pitch g.rc_4.trim(); // yaw g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_4.save_eeprom(); }