/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_Boundary_3D.h" #define PROXIMITY_BOUNDARY_3D_TIMEOUT_MS 750 // we should check the 3D boundary faces after this many ms /* Constructor. This incorporates initialisation as well. */ AP_Proximity_Boundary_3D::AP_Proximity_Boundary_3D() { // initialise sector edge vector used for building the boundary fence init(); } // initialise the boundary and sector_edge_vector array used for object avoidance // should be called if the sector_middle_deg or _sector_width_deg arrays are changed void AP_Proximity_Boundary_3D::init() { for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { const float pitch = ((float)_pitch_middle_deg[layer]); for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { const float angle_rad = ((float)_sector_middle_deg[sector]+(PROXIMITY_SECTOR_WIDTH_DEG/2.0f)); _sector_edge_vector[layer][sector].offset_bearing(angle_rad, pitch, 100.0f); _boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * PROXIMITY_BOUNDARY_DIST_DEFAULT; } } } // returns face corresponding to the provided yaw and (optionally) pitch // pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle) // yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle) AP_Proximity_Boundary_3D::Face AP_Proximity_Boundary_3D::get_face(float pitch, float yaw) const { const uint8_t sector = wrap_360(yaw + (PROXIMITY_SECTOR_WIDTH_DEG * 0.5f)) / 45.0f; const float pitch_limited = constrain_float(pitch, -75.0f, 74.9f); const uint8_t layer = (pitch_limited + 75.0f)/PROXIMITY_PITCH_WIDTH_DEG; return Face{layer, sector}; } // Set the actual body-frame angle(yaw), pitch, and distance of the detected object. // This method will also mark the sector and layer to be "valid", // This distance can then be used for Obstacle Avoidance // Assume detected obstacle is horizontal (zero pitch), if no pitch is passed // prx_instance should be set to the proximity sensor backend instance number void AP_Proximity_Boundary_3D::set_face_attributes(const Face &face, float pitch, float angle, float distance, uint8_t prx_instance) { if (!face.valid()) { return; } // ignore update if another instance has provided a shorter distance within the last 0.2 seconds if ((prx_instance != _prx_instance[face.layer][face.sector]) && _distance_valid[face.layer][face.sector] && (_filtered_distance[face.layer][face.sector].get() < distance)) { // check if recent const uint32_t now_ms = AP_HAL::millis(); if (now_ms - _last_update_ms[face.layer][face.sector] < PROXIMITY_FACE_RESET_MS) { return; } } _angle[face.layer][face.sector] = angle; _pitch[face.layer][face.sector] = pitch; _distance[face.layer][face.sector] = distance; _distance_valid[face.layer][face.sector] = true; _prx_instance[face.layer][face.sector] = prx_instance; // apply filter set_filtered_distance(face, distance); // update boundary used for simple avoidance update_boundary(face); } // apply a new cutoff_freq to low-pass filter void AP_Proximity_Boundary_3D::apply_filter_freq(float cutoff_freq) { for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { _filtered_distance[layer][sector].set_cutoff_frequency(cutoff_freq); } } } // Apply low pass filter on the raw distance void AP_Proximity_Boundary_3D::set_filtered_distance(const Face &face, float distance) { if (!face.valid()) { return; } if (!is_equal(_filtered_distance[face.layer][face.sector].get_cutoff_freq(), _filter_freq)) { // cutoff freq has changed apply_filter_freq(_filter_freq); } const uint32_t now_ms = AP_HAL::millis(); const uint32_t dt = now_ms - _last_update_ms[face.layer][face.sector]; if (dt < PROXIMITY_FILT_RESET_TIME) { _filtered_distance[face.layer][face.sector].apply(distance, dt* 0.001f); } else { // reset filter since last distance was passed a long time back _filtered_distance[face.layer][face.sector].reset(distance); } _last_update_ms[face.layer][face.sector] = now_ms; } // update boundary points used for object avoidance based on a single sector and pitch distance changing // the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing // the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle void AP_Proximity_Boundary_3D::update_boundary(const Face &face) { // sanity check if (!face.valid()) { return; } const uint8_t layer = face.layer; const uint8_t sector = face.sector; // find adjacent sector (clockwise) const uint8_t next_sector = get_next_sector(sector); // boundary point lies on the line between the two sectors at the shorter distance found in the two sectors float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[layer][sector] && _distance_valid[layer][next_sector]) { shortest_distance = MIN(_filtered_distance[layer][sector].get(), _filtered_distance[layer][next_sector].get()); } else if (_distance_valid[layer][sector]) { shortest_distance = _filtered_distance[layer][sector].get(); } else if (_distance_valid[layer][next_sector]) { shortest_distance = _filtered_distance[layer][next_sector].get(); } if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; } _boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * shortest_distance; // if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary if (!_distance_valid[layer][next_sector]) { _boundary_points[layer][next_sector] = _sector_edge_vector[layer][next_sector] * shortest_distance; } // repeat for edge between sector and previous sector const uint8_t prev_sector = get_prev_sector(sector); shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[layer][prev_sector] && _distance_valid[layer][sector]) { shortest_distance = MIN(_filtered_distance[layer][prev_sector].get(), _filtered_distance[layer][sector].get()); } else if (_distance_valid[layer][prev_sector]) { shortest_distance = _filtered_distance[layer][prev_sector].get(); } else if (_distance_valid[layer][sector]) { shortest_distance = _filtered_distance[layer][sector].get(); } _boundary_points[layer][prev_sector] = _sector_edge_vector[layer][prev_sector] * shortest_distance; // if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup-like boundary const uint8_t prev_sector_ccw = get_prev_sector(prev_sector); if (!_distance_valid[layer][prev_sector_ccw]) { _boundary_points[layer][prev_sector_ccw] = _sector_edge_vector[layer][prev_sector_ccw] * shortest_distance; } } // reset boundary. marks all distances as invalid void AP_Proximity_Boundary_3D::reset() { for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { _distance_valid[layer][sector] = false; } } } // Reset this location, specified by Face object, back to default // i.e Distance is marked as not-valid, and set to a large number. // prx_instance should be set to the proximity sensor's backend instance number void AP_Proximity_Boundary_3D::reset_face(const Face &face, uint8_t prx_instance) { if (!face.valid()) { return; } // return immediately if face already has no valid distance if (!_distance_valid[face.layer][face.sector]) { return; } // ignore reset if another instance provided this face's distance within the last 0.2 seconds if (prx_instance != _prx_instance[face.layer][face.sector]) { const uint32_t now_ms = AP_HAL::millis(); if (now_ms - _last_update_ms[face.layer][face.sector] < 200) { return; } } _distance_valid[face.layer][face.sector] = false; // update simple avoidance boundary update_boundary(face); } // check if a face has valid distance even if it was updated a long time back void AP_Proximity_Boundary_3D::check_face_timeout() { // exit immediately if already checked recently const uint32_t now_ms = AP_HAL::millis(); if ((now_ms - _last_check_face_timeout_ms) < PROXIMITY_BOUNDARY_3D_TIMEOUT_MS) { return; } _last_check_face_timeout_ms = now_ms; for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { if (_distance_valid[layer][sector]) { if ((now_ms - _last_update_ms[layer][sector]) > PROXIMITY_FACE_RESET_MS) { // this face has a valid distance but wasn't updated for a long time, reset it _distance_valid[layer][sector] = false; update_boundary(AP_Proximity_Boundary_3D::Face{layer, sector}); } } } } } // get distance for a face. returns true on success and fills in distance argument with distance in meters bool AP_Proximity_Boundary_3D::get_distance(const Face &face, float &distance) const { if (!face.valid()) { return false; } if (_distance_valid[face.layer][face.sector]) { distance = _distance[face.layer][face.sector]; return true; } return false; } // get the total number of obstacles uint8_t AP_Proximity_Boundary_3D::get_obstacle_count() const { return PROXIMITY_NUM_LAYERS * PROXIMITY_NUM_SECTORS; } // Converts obstacle_num passed from avoidance library into appropriate face of the boundary // Returns false if the face is invalid // "update_boundary" method manipulates two sectors ccw and one sector cw from any valid face. // Any boundary that does not fall into these manipulated faces are useless, and will be marked as false // The resultant is packed into a Boundary Location object and returned by reference as "face" bool AP_Proximity_Boundary_3D::convert_obstacle_num_to_face(uint8_t obstacle_num, Face& face) const { // obstacle num is just "flattened layers, and sectors" const uint8_t layer = obstacle_num / PROXIMITY_NUM_SECTORS; const uint8_t sector = obstacle_num % PROXIMITY_NUM_SECTORS; face.sector = sector; face.layer = layer; uint8_t valid_sector = sector; // check for 3 adjacent sectors for (uint8_t i=0; i < 3; i++) { if (_distance_valid[layer][valid_sector]) { // update boundary has manipulated this face return true; } valid_sector = get_next_sector(valid_sector); } // this face was not manipulated by "update_boundary" and is stale. Don't use it return false; } // Appropriate layer and sector are found from the passed obstacle_num // This function then draws a line between this sector, and sector + 1 at the given layer // Then returns the closest point on this line from vehicle, in body-frame. // Used by GPS based Simple Avoidance // False is returned if the obstacle_num provided does not produce a valid obstacle bool AP_Proximity_Boundary_3D::get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const { Face face; if (!convert_obstacle_num_to_face(obstacle_num, face)) { // not a valid face return false; } const uint8_t sector_end = face.sector; const uint8_t sector_start = get_next_sector(face.sector); const Vector3f start = _boundary_points[face.layer][sector_start]; const Vector3f end = _boundary_points[face.layer][sector_end]; vec_to_obstacle = Vector3f::point_on_line_closest_to_other_point(start, end, Vector3f{}); return true; } // Appropriate layer and sector are found from the passed obstacle_num // This function then draws a line between this sector, and sector + 1 at the given layer // Then returns the closest point on this line from the segment that was passed, in body-frame. // Addionally a 3-D plane is constructed using the closest point found above as normal, and a point on the line segment in the boundary. // True is returned when the passed line segment intersects this plane. // This helps us know if the passed line segment was in the direction of the boundary, or going in a different direction. // Used by GPS based Simple Avoidance - for "brake mode" // False is returned if the obstacle_num provided does not produce a valid obstacle bool AP_Proximity_Boundary_3D::closest_point_from_segment_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const { Face face; if (!convert_obstacle_num_to_face(obstacle_num, face)) { // not a valid a face return false; } const uint8_t sector_end = face.sector; const uint8_t sector_start = get_next_sector(face.sector); const Vector3f start = _boundary_points[face.layer][sector_start]; const Vector3f end = _boundary_points[face.layer][sector_end]; // closest point between passed line segment and boundary Vector3f::segment_to_segment_closest_point(seg_start, seg_end, start, end, closest_point); if (closest_point == start) { // draw a plane using the closest point as normal vector, and a point on the boundary // return false if the passed segment does not intersect the plane return Vector3f::segment_plane_intersect(seg_start, seg_end, closest_point, end); } return Vector3f::segment_plane_intersect(seg_start, seg_end, closest_point, start); } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity_Boundary_3D::get_closest_object(float& angle_deg, float &distance) const { bool closest_found = false; uint8_t closest_sector = 0; uint8_t closest_layer = 0; // check boundary for shortest distance // only check for middle layers and higher // lower layers might contain ground, which will give false pre-arm failure for (uint8_t layer=PROXIMITY_MIDDLE_LAYER; layer