/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* simple socket handling class for systems with BSD socket API */ #include #include #if AP_NETWORKING_SOCKETS_ENABLED #ifndef SOCKET_CLASS_NAME #define SOCKET_CLASS_NAME SocketAPM #endif #ifndef IN_SOCKET_NATIVE_CPP #include "Socket.hpp" #endif #if AP_NETWORKING_BACKEND_CHIBIOS || AP_NETWORKING_BACKEND_PPP #include #else // SITL or Linux #include #include #include #include #include #include #include #include #endif #include #if AP_NETWORKING_BACKEND_CHIBIOS || AP_NETWORKING_BACKEND_PPP #define CALL_PREFIX(x) ::lwip_##x #else #define CALL_PREFIX(x) ::x #endif #ifndef MSG_NOSIGNAL #define MSG_NOSIGNAL 0 #endif /* constructor */ SOCKET_CLASS_NAME::SOCKET_CLASS_NAME(bool _datagram) : SOCKET_CLASS_NAME(_datagram, CALL_PREFIX(socket)(AF_INET, _datagram?SOCK_DGRAM:SOCK_STREAM, 0)) { static_assert(sizeof(SOCKET_CLASS_NAME::last_in_addr) >= sizeof(struct sockaddr_in), "last_in_addr must be at least sockaddr_in size"); } SOCKET_CLASS_NAME::SOCKET_CLASS_NAME(bool _datagram, int _fd) : datagram(_datagram), fd(_fd) { #ifdef FD_CLOEXEC CALL_PREFIX(fcntl)(fd, F_SETFD, FD_CLOEXEC); #endif if (!datagram) { int one = 1; CALL_PREFIX(setsockopt)(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); } } SOCKET_CLASS_NAME::~SOCKET_CLASS_NAME() { if (fd != -1) { CALL_PREFIX(close)(fd); } if (fd_in != -1) { CALL_PREFIX(close)(fd_in); } } void SOCKET_CLASS_NAME::make_sockaddr(const char *address, uint16_t port, struct sockaddr_in &sockaddr) { memset(&sockaddr, 0, sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(port); sockaddr.sin_family = AF_INET; sockaddr.sin_addr.s_addr = htonl(inet_str_to_addr(address)); } #if !defined(HAL_BOOTLOADER_BUILD) /* connect the socket */ bool SOCKET_CLASS_NAME::connect(const char *address, uint16_t port) { if (fd == -1) { return false; } struct sockaddr_in sockaddr; int ret; int one = 1; make_sockaddr(address, port, sockaddr); if (datagram && is_multicast_address(sockaddr)) { /* connect fd_in as a multicast UDP socket */ fd_in = CALL_PREFIX(socket)(AF_INET, SOCK_DGRAM, 0); if (fd_in == -1) { return false; } struct sockaddr_in sockaddr_mc = sockaddr; struct ip_mreq mreq {}; #ifdef FD_CLOEXEC CALL_PREFIX(fcntl)(fd_in, F_SETFD, FD_CLOEXEC); #endif IGNORE_RETURN(CALL_PREFIX(setsockopt)(fd_in, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))); #if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD) /* on cygwin you need to bind to INADDR_ANY then use the multicast IP_ADD_MEMBERSHIP to get on the right address */ sockaddr_mc.sin_addr.s_addr = htonl(INADDR_ANY); #endif ret = CALL_PREFIX(bind)(fd_in, (struct sockaddr *)&sockaddr_mc, sizeof(sockaddr)); if (ret == -1) { goto fail_multi; } mreq.imr_multiaddr.s_addr = sockaddr.sin_addr.s_addr; mreq.imr_interface.s_addr = htonl(INADDR_ANY); ret = CALL_PREFIX(setsockopt)(fd_in, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); if (ret == -1) { goto fail_multi; } } if (datagram && sockaddr.sin_addr.s_addr == INADDR_BROADCAST) { // setup for bi-directional UDP broadcast set_broadcast(); reuseaddress(); } ret = CALL_PREFIX(connect)(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret != 0) { return false; } connected = true; if (datagram && sockaddr.sin_addr.s_addr == INADDR_BROADCAST) { // for bi-directional UDP broadcast we need 2 sockets struct sockaddr_in send_addr; socklen_t send_len = sizeof(send_addr); ret = CALL_PREFIX(getsockname)(fd, (struct sockaddr *)&send_addr, &send_len); fd_in = CALL_PREFIX(socket)(AF_INET, SOCK_DGRAM, 0); if (fd_in == -1) { goto fail_multi; } CALL_PREFIX(setsockopt)(fd_in, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); // 2nd socket needs to be bound to wildcard send_addr.sin_addr.s_addr = INADDR_ANY; ret = CALL_PREFIX(bind)(fd_in, (struct sockaddr *)&send_addr, sizeof(send_addr)); if (ret == -1) { goto fail_multi; } } return true; fail_multi: CALL_PREFIX(close)(fd_in); fd_in = -1; return false; } #endif // HAL_BOOTLOADER_BUILD /* connect the socket with a timeout */ bool SOCKET_CLASS_NAME::connect_timeout(const char *address, uint16_t port, uint32_t timeout_ms) { if (fd == -1) { return false; } struct sockaddr_in sockaddr; make_sockaddr(address, port, sockaddr); set_blocking(false); int ret = CALL_PREFIX(connect)(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == 0) { // instant connect? return true; } if (errno != EINPROGRESS) { return false; } bool pollret = pollout(timeout_ms); if (!pollret) { return false; } int sock_error = 0; socklen_t len = sizeof(sock_error); if (CALL_PREFIX(getsockopt)(fd, SOL_SOCKET, SO_ERROR, (void*)&sock_error, &len) != 0) { return false; } connected = sock_error == 0; return connected; } /* bind the socket */ bool SOCKET_CLASS_NAME::bind(const char *address, uint16_t port) { if (fd == -1) { return false; } struct sockaddr_in sockaddr; make_sockaddr(address, port, sockaddr); reuseaddress(); if (CALL_PREFIX(bind)(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) != 0) { return false; } return true; } /* set SO_REUSEADDR */ bool SOCKET_CLASS_NAME::reuseaddress(void) const { if (fd == -1) { return false; } int one = 1; return (CALL_PREFIX(setsockopt)(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) != -1); } /* set blocking state */ bool SOCKET_CLASS_NAME::set_blocking(bool blocking) const { if (fd == -1) { return false; } int fcntl_ret; if (blocking) { fcntl_ret = CALL_PREFIX(fcntl)(fd, F_SETFL, CALL_PREFIX(fcntl)(fd, F_GETFL, 0) & ~O_NONBLOCK); if (fd_in != -1) { fcntl_ret |= CALL_PREFIX(fcntl)(fd_in, F_SETFL, CALL_PREFIX(fcntl)(fd_in, F_GETFL, 0) & ~O_NONBLOCK); } } else { fcntl_ret = CALL_PREFIX(fcntl)(fd, F_SETFL, CALL_PREFIX(fcntl)(fd, F_GETFL, 0) | O_NONBLOCK); if (fd_in != -1) { fcntl_ret |= CALL_PREFIX(fcntl)(fd_in, F_SETFL, CALL_PREFIX(fcntl)(fd_in, F_GETFL, 0) | O_NONBLOCK); } } return fcntl_ret != -1; } /* set cloexec state */ bool SOCKET_CLASS_NAME::set_cloexec() const { if (fd == -1) { return false; } #ifdef FD_CLOEXEC return (CALL_PREFIX(fcntl)(fd, F_SETFD, FD_CLOEXEC) != -1); #else return false; #endif } /* send some data */ ssize_t SOCKET_CLASS_NAME::send(const void *buf, size_t size) const { if (fd == -1) { return -1; } return CALL_PREFIX(send)(fd, buf, size, MSG_NOSIGNAL); } /* send some data */ ssize_t SOCKET_CLASS_NAME::sendto(const void *buf, size_t size, const char *address, uint16_t port) { if (fd == -1) { return -1; } struct sockaddr_in sockaddr; make_sockaddr(address, port, sockaddr); return CALL_PREFIX(sendto)(fd, buf, size, 0, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); } /* receive some data */ ssize_t SOCKET_CLASS_NAME::recv(void *buf, size_t size, uint32_t timeout_ms) { if (!pollin(timeout_ms)) { errno = EWOULDBLOCK; return -1; } socklen_t len = sizeof(struct sockaddr_in); int fin = get_read_fd(); ssize_t ret; ret = CALL_PREFIX(recvfrom)(fin, buf, size, MSG_DONTWAIT, (sockaddr *)&last_in_addr[0], &len); if (ret <= 0) { if (!datagram && connected && ret == 0) { // remote host has closed connection connected = false; } return ret; } if (fd_in != -1) { /* for multicast check we are not receiving from ourselves */ struct sockaddr_in send_addr; socklen_t send_len = sizeof(send_addr); if (CALL_PREFIX(getsockname)(fd, (struct sockaddr *)&send_addr, &send_len) != 0) { return -1; } const struct sockaddr_in &sin = *(struct sockaddr_in *)&last_in_addr[0]; if (sin.sin_port == send_addr.sin_port && sin.sin_family == send_addr.sin_family && sin.sin_addr.s_addr == send_addr.sin_addr.s_addr) { // discard packets from ourselves return -1; } } return ret; } /* return the IP address and port of the last received packet */ void SOCKET_CLASS_NAME::last_recv_address(const char *&ip_addr, uint16_t &port) const { static char buf[IP4_STR_LEN]; auto *str = last_recv_address(buf, sizeof(buf), port); ip_addr = str; } /* return the IP address and port of the last received packet, using caller supplied buffer */ const char *SOCKET_CLASS_NAME::last_recv_address(char *ip_addr_buf, uint8_t buflen, uint16_t &port) const { const struct sockaddr_in &sin = *(struct sockaddr_in *)&last_in_addr[0]; const char *ret = inet_addr_to_str(ntohl(sin.sin_addr.s_addr), ip_addr_buf, buflen); if (ret == nullptr) { return nullptr; } port = ntohs(sin.sin_port); return ret; } void SOCKET_CLASS_NAME::set_broadcast(void) const { if (fd == -1) { return; } int one = 1; CALL_PREFIX(setsockopt)(fd,SOL_SOCKET,SO_BROADCAST,(char *)&one,sizeof(one)); } /* return true if there is pending data for input */ bool SOCKET_CLASS_NAME::pollin(uint32_t timeout_ms) { fd_set fds; struct timeval tv; FD_ZERO(&fds); int fin = get_read_fd(); if (fin == -1) { return false; } FD_SET(fin, &fds); tv.tv_sec = timeout_ms / 1000; tv.tv_usec = (timeout_ms % 1000) * 1000UL; if (CALL_PREFIX(select)(fin+1, &fds, nullptr, nullptr, &tv) != 1) { return false; } return true; } /* return true if there is room for output data */ bool SOCKET_CLASS_NAME::pollout(uint32_t timeout_ms) { if (fd == -1) { return false; } fd_set fds; struct timeval tv; FD_ZERO(&fds); FD_SET(fd, &fds); tv.tv_sec = timeout_ms / 1000; tv.tv_usec = (timeout_ms % 1000) * 1000UL; if (CALL_PREFIX(select)(fd+1, nullptr, &fds, nullptr, &tv) != 1) { return false; } return true; } /* start listening for new tcp connections */ bool SOCKET_CLASS_NAME::listen(uint16_t backlog) const { if (fd == -1) { return false; } return CALL_PREFIX(listen)(fd, (int)backlog) == 0; } /* accept a new connection. Only valid for TCP connections after listen has been used. A new socket is returned */ SOCKET_CLASS_NAME *SOCKET_CLASS_NAME::accept(uint32_t timeout_ms) { if (fd == -1) { return nullptr; } if (!pollin(timeout_ms)) { return nullptr; } struct sockaddr_in &sin = *(struct sockaddr_in *)&last_in_addr[0]; socklen_t len = sizeof(sin); int newfd = CALL_PREFIX(accept)(fd, (sockaddr *)&sin, &len); if (newfd == -1) { return nullptr; } auto *ret = NEW_NOTHROW SOCKET_CLASS_NAME(false, newfd); if (ret != nullptr) { ret->connected = true; ret->reuseaddress(); } return ret; } /* return true if an address is in the multicast range */ bool SOCKET_CLASS_NAME::is_multicast_address(struct sockaddr_in &addr) const { const uint32_t mc_lower = 0xE0000000; // 224.0.0.0 const uint32_t mc_upper = 0xEFFFFFFF; // 239.255.255.255 const uint32_t haddr = ntohl(addr.sin_addr.s_addr); return haddr >= mc_lower && haddr <= mc_upper; } void SOCKET_CLASS_NAME::close(void) { if (fd != -1) { CALL_PREFIX(close)(fd); fd = -1; } if (fd_in != -1) { CALL_PREFIX(close)(fd_in); fd_in = -1; } } /* duplicate a socket, giving a new object with the same contents, the fd in the old object is set to -1 */ SOCKET_CLASS_NAME *SOCKET_CLASS_NAME::duplicate(void) { auto *ret = NEW_NOTHROW SOCKET_CLASS_NAME(datagram, fd); if (ret == nullptr) { return nullptr; } ret->fd_in = fd_in; ret->connected = connected; fd = -1; fd_in = -1; return ret; } // access to inet_ntop, takes host order ipv4 as uint32_t const char *SOCKET_CLASS_NAME::inet_addr_to_str(uint32_t addr, char *dst, uint16_t len) { addr = htonl(addr); return CALL_PREFIX(inet_ntop)(AF_INET, (void*)&addr, dst, len); } // access to inet_pton, returns host order ipv4 as uint32_t uint32_t SOCKET_CLASS_NAME::inet_str_to_addr(const char *ipstr) { uint32_t ret = 0; CALL_PREFIX(inet_pton)(AF_INET, ipstr, &ret); return ntohl(ret); } #endif // AP_NETWORKING_BACKEND_ANY